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Abstract 
Extensive research has been carried out over the course of the last few decades to induce 

dropwise condensation as it offers 5 - 7 times better heat transfer performance compared 

to filmwise condensation process. A number of methods such as low surface energy 

hydrophobic coatings, surface modification of hydrophobic surfaces to fabricate micro, 

nano and hierarchical structures, and the recent incorporation of jumping droplet 

phenomenon have provided effective means to further enhance the condensation heat 

transfer. However, existing methods to enhance condensation heat transfer rate fail in the 

case of low surface tension, highly wetting liquids such as hydrocarbons, cryogens, and 

fluorinated dielectrics and refrigerants used in various industrial applications. Due to their 

extremely wetting behavior, such fluids almost always condense in a filmwise mode and 

the removal of the condensate other than by gravity has been a challenge. Here, we 

fabricate a novel capillary surface to decouple the removal of the condensate vapor from 

the condensing surface. The new surface consists of alternating capillary bridge and plain 

sections. The liquid condensing in the plain channels and the outer surfaces of the 

capillary bridge is wicked into the wick bridge, effectively decoupling the condensation 

surface and the condensate removal paths.  

We have determined that the condensation performance of the fabricated surfaces is 

enhanced by a factor of 3 compared to a plain surface, and further enhanced by a factor of 

4.5, compared to a plain surface, by bonding an additional cover mesh layer and 

decreasing the channels widths of the condensation surface. This proves that the concept 
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of employing a capillary bridge greatly enhances the rate of condensation for low surface 

tension liquids such as dielectric fluids. Hence, the knowledge gained from this thesis 

will serve as basic guideline for designing new simple, cost effective, and scalable 

surface technologies with enhanced condensation heat transfer for widely used low 

surface tension liquids. 
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1 Introduction 
Condensation is a very common process occurring throughout in nature [1-5] and a very 

influential process, which plays significant role in a wide range of industrial applications 

[6-13]. Condensation heat transfer has been the subject of more than a century of research 

[14-24] undergoing numerous advances to augment the rate of heat transfer. 

Enhancement in the condensation heat transfer rate has huge ramifications in improving 

the efficiency of power generation, and thereby better utilization of world's energy 

resources [25-27]. Condensation also plays a significant role in many other applications 

such as water supply in regions of water scarcity through desalination technologies [28-

30], industrial heat exchangers, HVAC applications [31-34], fuel cells [35], thermal 

management of electronics [36], water harvesting [37, 38], nuclear reactors [1-3, 39, 40]. 

1.1 Hydrophobic Coatings 

Most industrial clean metal surfaces provide reduced energy barrier for droplet nucleation 

during condensation process owing to their high surface energy [41]. Due to high wetting 

tendency of these surfaces, the condensate forms a liquid film on the surface. This liquid 

film acts as a thermal resistance reducing the condensation heat transfer. This mode of 

condensation is termed as filmwise condensation [14]. Schmidt et al. [14] first recognized 

the concept of dropwise condensation in 1930. They reported that the dropwise 

condensation improves the heat transfer rate by up to 7 times compared to the filmwise 

condensation [14]. There has been extensive research to understand mechanisms of 

nucleation and growth processes of condensing droplets [14, 52-67]. It has been 

identified that the major driving force for liquid transport off the condensing surface and 
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replenishing the surface for further droplet nucleation is through gravity-induced droplet 

removal, when condensing droplets merge and reach a critical size close to their capillary 

length (2.7mm for water) [68-70]. Clean metals such as gold, silver, which were earlier 

believed to have filmwise condensation, were shown to promote dropwise condensation 

because of the adsorption of impurities and contaminants onto their surface thereby 

making the surface a low energy non-wetting surface with high contact angles [42-46]. 

Subsequently, industrial metals were coated with low energy non-wetting promoter 

materials such as long chain fatty acids, wax or gold or silver layers, which have the 

tendency to adsorb contaminants to ensure dropwise condensation. Marto et al. [47] 

showed that by coating polymer materials, gold, silver, dropwise condensation could be 

sustained for more than 12000 hrs with heat transfer coefficients of 6 times compared to 

the filmwise mode. Bonner et al. [48], Das et al. [51] and Vemuri et al. [49, 50] have 

shown the technique of self-assembled monolayers to form an ultra-thin coating of 

hydrophobic material, which provides negligible resistance to heat transfer and promotes 

dropwise condensation. Though the advantages of dropwise condensation heat transfer 

phenomenon was realized more than 80 years ago, a durable approach to sustain this 

mode in industrial conditions is yet to be realized. Low surface energy coatings although 

ensure effective dropwise condensation, the durability of these coatings for long term 

applications and in industrial conditions has been a roadblock for widespread 

implications of hydrophobic coating approaches [71, 72]. The hunt for robust coatings is 

still an ongoing research interest. 
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1.2 Superhydrophobic Surfaces 

With recent understanding of the superhydrophobic nature of the lotus leaf, a new 

approach of surface structuring to induce superhydrophobicity has been the topic of the 

last two decades of research. A hydrophobic surface when roughened results in air being 

filled in the pores created by roughening, thereby leading to a superhydrophobic surface. 

Condensation on these surfaces, termed Cassie-Baxter state [73], promotes highly mobile 

droplets resulting in easy removal of condensed liquid. Narhe et al. [74-76] 

experimentally investigated the nucleation and growth of droplets on roughened 

superhydrophobic surfaces. The spatial control of microstructuring and its effect on 

droplet condensation has been shown by Varanasi et al. [77]. They showed, as the 

condensation process proceeds, there is a transition from the Cassie-Baxter state to a 

highly pinned Wenzel state [74-78], where the liquid partially penetrates into the pores 

thereby increasing contact pinning. Figure 1.1 shows time-lapsed images of the transition 

from suspended Cassie-Baxter state to pinned Wenzel state with the growth of droplets 

during condensation, as investigated by Narhe et al. [76] 
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Figure 1.1: Transition from suspended Cassie-Baxter state to pinned Wenzel state as condensation proceeds 
(Copyright of Narhe et al. [76]). 

Doerrer et al. [79] have studied this transition in detail where the micro-structured posts 

were coated with fluoropolymer. To achieve a sustained Cassie-Baxter state, Chen et al. 

[80] experimented with a two-tier hierarchical roughness, similar to a lotus leaf structure. 

A Silicon substrate was etched by deep reactive ion etching to create squared micropillars 

on top of which Carbon nanotubes were deposited by plasma enhanced vapor deposition. 

The substrate was then coated by a thin layer of parylene C or gold further coated by a 

monolayer of 1-hexadecanethiol. The resulting structure is as shown in Figure 1.2 [80]. 
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Figure 1.2: Two-tier textures: micropillars are 
etched in silicon, and CNT nanopillars are 
subsequently deposited. (a,b) microstructures 
with two varying sets of dimensions, (c) single 
micropillar with carbon nanotubes, and (d) 
deposited carbon nanotubes (Copyright of 
Chen et al. [80]). 

 
Figure 1.3: Coalescence of condensate drops on parylene-
coated textures. (a, b) condensate drops on only one-tier 
micropillars, (c, d) condensate drops on only one-tier 
nanopillars, and (e, f) condensate drops on two-tier 
micropillars deposited with nanopillars (Copyright of 
Chen et al. [80])). 

It can be observed from Figure 1.3 that by using a combination of hierarchical 

micropillars with nanopillars ((e), (f)), spherical droplets typical of Cassie-Baxter state 

can be obtained before and after condensation as shown by Chen et al. [80]. 

Wen et al. [81] showed enhanced condensation rates by structuring high aspect ratio 

nanowires and reducing the permeability of water vapor between copper nanowires. A 

copper substrate was cleaned to remove impurities and oxides and high aspect ratio 

nanowires were deposited by a two-step porous anodic alumina (PAA) template-assisted 

electro-deposition method. The structures were then immersed in an ethanol solution of 

n-octadecanethiol and n-octadecyl mercaptan to make them hydrophobic [81]. The 

resulting aspect ratio structures were shown in Figure 1.4 [81]. The high aspect ratio was 

responsible for reduced diffusion of vapor between the nanowires and condensation 

occurred at the tips of the nanowires. Wen et al. [81] were able to achieve high heat 

fluxes for surface subcooling greater than 5K as shown in Figure 1.5 [81].  
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Figure 1.4: Hydrophobic nanowires (Copyright of 
Wen et al. [81]). 

 
Figure 1.5: Condensation rates on hydrophobic 
nanowires. (a) heat transfer performance, (b) 
jumping condensation, (c) mixing condensation, 
and (d) dropwise condensation (Copyright of Wen 
et al. [81]). 

Shaping the nanopillars, as cones, resulting in a nanocone array, similar to the 

nanostructures on cicada wings, seemed to have higher superhydrophobic performance 

and antifogging abilities even for microdroplets as investigated by Mouterde et al. [82]. 

Figure 1.6 shows the structure of nanocones and their effect on micro sized droplets.  

 

Figure 1.6: Nanocone structures and their performance. (a) nanocone array structured on the substrate, (b) 
structures on cicada wings, (c) adhesive force comparison between nanocylinder array (A-blue) and 
nanocone array (C-red) with temperature, and (d), (e) varying droplet sizes on nanocones (Copyright of 
Mouterde et al. [82]). 

Mandsberg et al. [83] fabricated a chemically homogeneous micro pillar array by 

photolithography and treated to obtain a self-assembled monolayer of 
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perfluorodecyltrichlorosilane to make it hydrophobic [83]. They showed that by having 

control over the micropillar dimensions and spacing, and also the way by which the vapor 

is introduced onto the surface, spatial control of condensing microdroplets is possible (cf. 

Figure 1.7) [83]. 

 

Figure 1.7: Chemically homogeneous micropillar array (left) and microdroplets controlled on the tips of 
these pillars (right) Copyright of Mandsberg et al. [83]). 

A novel cost effective method to spatially control a condensing microdroplet array was 

experimented by Xie et al. [84]. They fabricated a surface by sintering a copper mesh on 

to a copper block. Commercially available mesh screens of varying pore sizes provided 

an easy and economical way to control the spacing and dimensions. After subjecting the 

meshed substrate to oxidization, they found that various parts of the mesh were subjected 

to varying levels of oxidization due to the non-uniform distribution of stresses in the 

mesh, as shown in Figure 1.8 [84]. On the same weft wires itself, region 3 (Figure 1.8 - 

(b), (e)) achieved a dense population of nano-rods/grass making it hydrophobic whereas 

region 4 (Figure 1.8 - (b), (f)) was over-oxidized and resulted in micropits making it 

hydrophilic. This surface gradient resulted in the microdroplets condensing only on the 
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region 4 areas, thereby creating a controlled microdroplet condensation array as shown in 

Figure 1.9 [84]. Nam et al. [85] also made a detailed comparative study to understand the 

effect of varying levels copper oxidation on their wettability behavior. 

 
Figure 1.8: (a, b) Mesh screen and magnified 
image of screen showing the 4 regions, and (c-f) 
magnified images showing the microstructures of 
the regions 1 (copper substrate), 2 (warp wire), 3 
(weft wire with nanograss) and 4 (weft wire with 
micropits) (Copyright of Xie et al. [84]). 

 
Figure 1.9: Growth of microdroplets on oxidized mesh 
screen (Copyright of Xie et al. [84]). 
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Figure 1.10: Physical model of the mesh structure, 
droplet growth and thermal analysis (Copyright of Xie 
et al. [84]). 

 
Figure 1.11: Comparison of microdroplet 
nucleation and growth between an array of 
hybrid micropillars of hydrophobic walls and 
hydrophilic tips, and an array of only 
hydrophobic micropillars (Copyright of Varanasi 
et al. [86]). 

Taking inspiration from the Namib beetle, Varanasi et al. [86] fabricated a novel hybrid 

micropillar array consisting of hydrophobic posts and hydrophilic tips, and thus 

effectively creating a wettability gradient on the same micropillar. The microstructures 

were fabricated by a combination of lithography and a UV-assisted surface modification 

technique. The micropillar walls and substrate channels were made hydrophobic with 

fluorinated hydrocarbons while the pillar tips were made hydrophilic by a deposition of 

silicon dioxide. The condensation experiments showed that these hybrid micropillars 

promoted condensation preferentially on the tips compared to completely hydrophobic 

micropillars, which showed droplet nucleation and growth with any spatial preference as 

shown in Figure 1.11 [86]. 
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Removal of condensed droplets from the surface for further condensation forms an 

integral part of any approach to enhance condensation heat transfer performance. Lee et 

al. [87] (Figure 1.12) investigated the concept of electrowetting of the condensation 

surface. In this method, an externally applied voltage stretches a sessile droplet due an 

axisymmetric balance of electrowetting forces. During the stretching, energy is stored in 

the droplet and when the voltage is cut off, the stored energy is released in the form of 

kinetic energy thus providing the extra energy to overcome the energy barrier and making 

the droplets jump off the surface as shown in Figure 1.12. This concept is a novel 

approach of applying an external force to remove droplets off a condensing surface, and 

thus enhancing condensation heat transfer rate. 

 

Figure 1.12: Demonstration of droplet jumping by electrowetting for different electrode configurations 
(Copyright of Lee et al. [87]). 

1.3 Jumping Droplet Effect 

Jumping droplet phenomenon is the recent advancement and state-of-the-art mechanism 

for easy removal of the condensing droplets off the surface for condensation heat transfer 
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enhancement. This phenomenon occurs when the condensing droplets coalesce and 

release the extra surface energy in the form of kinetic energy, thereby resulting in out of 

plane jumping of the droplet, irrespective of gravity. Boreyko et al. [88], Dietz et al. [89], 

and Enright et al. [90, 91] explored thoroughly the mechanism of jumping droplet as 

shown in Figure 1.13 and Figure 1.14. The jumping drop mode is present when a 

superhydrophobic surface is precisely designed in an optimum range. This phenomenon 

has added a new dimension to effectively remove condensate from the surface and 

refresh the surface for re-nucleation. The jumping droplet effect has been extensively 

studied for a number of applications and still is an actively pursued research interest.  

 

Figure 1.13: Mechanism of droplet jumping 
(Copyright of Boreyko et al. [88]). 

 
Figure 1.14: Stages of droplet growth and 
subsequent removal of droplet by out-of-plane 
jumping (Copyright of Boreyko et al. [88]). 

Miljkovic et al. [92, 93] produced knife like copper oxide nanostructures of 

approximately 1 μm characteristic length on copper tubes through a simple immersion of 

the substrate in an alkaline solution. This fabrication approach resulted in oxidation and 

deposition of a layer fluorinated silane, making substrate superhydrophobic, as shown in 

Figure 1.15. They studied the droplet growth dynamics as shown in Figure 1.16. 

Condensation experiments with various structures showed a 25% higher overall heat flux 

and 30% higher heat transfer coefficient on the copper nanostructures at low super 

saturations owing to the spontaneous out-of-plane jumping of droplets clearing the 
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surface for re-nucleation (cf. Figure 1.17). Miljkovic et al. [93] also performed a detailed 

heat transfer analysis of various droplet morphologies such as partially wetting and 

suspended with respect to the jumping droplet effect shown in Figure 1.18. 

 
Figure 1.15: Copper nanostructures produced 
through surface oxidation. (a-c) and structures 
after silane deposition, and (d) Copyright of 
Miljkovic et al. [92]). 

 
Figure 1.16: Droplet growth dynamics and subsequent 
coalesce jumping during condensation (Copyright of 
Miljkovic et al. [92]). 

      

 
Figure 1.17: Comparison of heat flux 
and heat transfer coefficient for 
various modes of condensation 
(Copyright of Miljkovic et al. [92]). 

 
Figure 1.18: Comparison of heat flux for partially wetting, flat 
surface and suspended morphologies (Copyright of Miljkovic et 
al. [93]). 
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Rykaczewski et al. [94] also explored the effect of micro topology of superhydrophobic 

surfaces on wetting states and droplet coalescence dynamics during condensation by 

fabricating varying dimensions of superhydrophobic surfaces with truncated microcones. 

Feng et al. [95] also investigated the various factors influencing the jumping droplet 

condensation. They fabricated a series of copper substrates with varying levels of 

oxidation to produce nanostructures and varying levels of fluorization and showed that 

these factors play a significant role in the coalescence jumping droplet performance (cf. 

Figure 1.19 and Figure 1.20). 

 
Figure 1.19: Variation of contact angle of 
droplets on copper surfaces with 
increasing levels of oxidation from (a) to 
(g) (Copyright of Feng et al. [95]). 

 
Figure 1.20: Condensation on nanostructures with varying 
levels of oxidation (density of nanostructures) (Copyright of 
Feng et al. [95]). 

Wisdom et al. [96] demonstrated that the self-propelled jumping droplet effect can be 

used as an effective means for self-cleaning of contaminants from surfaces, as inspired 

from the cicada wings. They showed that when a contaminated superhydrophobic surface 

typical of a cicada wing is subjected to atmospheric condensation, the contaminants 

either attach to the air-liquid interface or detach into the bulk liquid, of the droplet. When 

these microscale droplets containing the liquid coalesce, the surface energy released 

propels the droplets along with contaminants out of the condensing surface, there 
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removing the contaminants from the surface. Figure 1.21 and Figure 1.22 show the 

process of contaminant removal when the contaminant is floating in the bulk liquid or 

when the contaminants are collected by the aggregating liquid respectively. They also 

showed that this method of removing the contaminants is highly effective when 

compared with other natural cleaning processes such as wind shear or mechanical 

vibration approaches. 

 
Figure 1.21: Demonstration of microscale 
glass particle removal, floating in the droplet 
(Copyright of Wisdom et al. [96]). 

 
Figure 1.22: Demonstration of microscale glass particle by 
aggregation of condensing liquid (Copyright of Wisdom et 
al. [96]). 

 Overall condensation heat transfer can be enhanced if the rate of droplet growth can be 

enhanced. This requires a hydrophilic surface though. At the same time, the rate of 

droplet removal from the surface should be enhanced to sustain dropwise condensation 

and enable faster re-nucleation. This typically is favored by hydrophobic surfaces. Chen 

et al. [97] engineered a hierarchical micropyramidal surface and showed that these two 

conflicting effects, that is, both the hydrophilic and hydrophobic effects can be achieved 

and droplets can be made to coalesce and be removed from the surface by the out-of-

plane jumping phenomenon. The fabricated hierarchical micropyramidal structures are as 

shown in Figure 1.23 [97]. 
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Figure 1.23: Hierarchical micropyramidal structures (Copyright of Chen et al. [97]). 

The micropyramids were fabricated by standard photolithography, anisotrophic etching 

of silicon, and controlling the etching time. A deep reactive ion etching (DRIE) process 

was used to produce the nanopillars. The base walls of the micropyramids were made 

smooth by over-etching and the height of the nanopillars was reduced. The structures 

were further treated to make them hydrophobic. As a result, the smooth sidewalls of the 

micropyramids were hydrophilic whereas the inclined walls of the pyramids and the 

space between the pyramids comprising of nanopillars were hydrophobic. During 

condensation, the droplet nucleation occurred at the smooth sidewalls and as the droplets 

increased in size over the nanopillars and coalesced, the droplets jumped off the surface. 

Hence, they showed an enhanced droplet growth rate and droplet removal rate could be 

achieved. Figure 1.24 and Figure 1.25 show the droplet growth and removal respectively 

on this surface. 

Jumping droplets due to their interaction with the hydrophobic surfaces were found to 

attain a positive charge. In addition to the advantage of easy droplet removal, this charge 

could also be harvested to generate low levels of electric power by making the droplet 

jump from hydrophobic surfaces to hydrophilic surfaces as discovered by Miljkovic et al. 

[98]. They also found that by subjecting the condensing surface to an electric field, any 
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possibility of return of the positively charged jumping droplets back to the condensation 

surface could be eliminated [99]. 

 
Figure 1.24: Droplet nucleation and growth 
on the hierarchical micropyramids 
(Copyright of Chen et al. [97]). 

 
Figure 1.25: Droplet coalesce and out-of-plane jumping of 
condensed droplets (Copyright of Chen et al. [97]). 

Phase-change thermal diodes also make use of the jumping droplet effect to provide an 

effective means of heat transfer between the cooling surface and the surface to be cooled. 

By placing both the surfaces close to each other, the vapor condenses on the cooler 

superhydrophobic surface and due to the jumping droplet effect, the condensed droplets 

jump, attach to the hot superhydrophilic surface, and hence are evaporated. The vapor 

produced further condenses on the cold surface and the cycle continues, thereby 

effectively transferring the heat from the hot surface to the cold surface without an 

external means as shown in Figure 1.26. 
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Figure 1.26: Schematic of jumping droplet assisted thermal diode (Copyright of Boreyko et al. [100]). 

Jumping droplet phenomenon was discovered to suppress frost formation and also 

enabled easy defrosting as shown by Boreyko et al. [101], Chen et al. [102], and Zhang et 

al. [103] (cf. Figure 1.27 and Figure 1.28).  

 
Figure 1.27: Comparison of onset 
of frost formation between a 
hydrophobic surface and a 
superhydrophobic surface 
characteristic of jumping droplet 
(Copyright of Boreyko et al. 
[101]). 

 
Figure 1.28: Comparison of freezing wave propagation between a 
hydrophobic surface, SHS with nano structures and SHS with 
hierarchical structures (Copyright of Chen et al. [102]). 

1.4 Low Surface Tension Liquids and Condensation 

Although active pursuit of enhancing the condensation heat transfer performance has 

been carried out over the past century from the industrial and academic fronts, most of 

the research has been concentrated with water as the working fluid. There has been little 
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motivation to do the same for low surface tension fluids. However, low surface tension 

fluids such as hydrocarbons, refrigerants, alcohols are widely present in many industrial 

applications, and there is an ever-increasing need to enhance the condensation of these 

low surface tension liquids. Such fluids have been a significant part of industries such as 

chemical plants [105], food industry as low temperature storage medium [106], natural 

gas production and biomass combustion applications [107, 106] and increasingly in 

HVAC applications [108, 109]. 

Low surface tension liquids owing to their extreme wetting behavior typically end up in a 

filmwise condensation mode, and the only means for condensate removal is through 

gravity. The filmwise mode demonstrates a significant thermal barrier for condensation 

reducing the condensation heat transfer rate. All conventional approaches described in the 

previous sections to promote dropwise condensation fail in the case of low surface 

tension liquids. Although recent attempts were made to induce dropwise condensation 

and enhance condensation performance of the completely wetting liquids, the results have 

not been as significant as expected and also presented their own set of new challenges. 

Realizing the importance of this domain, research has picked up a good interest in this 

regard and is quickly becoming a hot topic in the condensation research community. 

Recent investigations in employing Slippery Liquid Infused Porous Surfaces (SLIPS) to 

promote dropwise condensation for water proved to be highly effective in enhancing 

condensation performance [20, 110-114], although there were unique challenges to be 

further investigated. Rykaczewski et al. [115] explored the concept of employing these 

SLIPS surfaces for low surface tension liquids and performed experimental investigations 
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with a number of surfaces and working fluids. The surfaces fabricated and tested are 

shown in Figure 1.29. They showed that the three surfaces fabricated in the nano to micro 

scales, before impregnating with the lubricant, resulted in complete wetting by the low 

surface tension fluids over time and always resulted in filmwise condensation mode. 

Only the re-entrant superomniphobic surfaces showed signs of Cassie-Baxter state for 

few of the working fluids but even then finally resulted in a filmwise condensation. Only 

after impregnation of condensing surface with a suitable lubricant, there was continuous 

formation and shedding of droplets. For a few of the working fluids, dropwise mode was 

observed, but ultimately even these surfaces resulted in filmwise condensation mode for 

fluids such as perfluorohexane, ethanol and isopropanaol, although with better heat 

transfer performances due to continuous shedding and hence a lower thickness 

condensate film on the surface. The nanostructured surface with the lubricant infused 

showed better performance of the three and promoted dropwise condensation for a better 

range of fluids. 
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Figure 1.29: SLIPS fabricated for condensation of low surface tension fluids: (a) alumin-silica 
nanostructures, (b) re-entrant superomniphobic surface, (c) microposts fabricated via photolithography, and 
(d-f) surfaces impregnated with lubricants (Copyright of Rykaczewski et al. [115]). 

SLIPS, although have shown to provide a better condensation performance for low 

surface tension fluids, compared to conventional approaches, these surfaces are faced 

with a variety of new challenges making them a less viable approach to be extensively 

used in wide ranges, scales, or applications. As reported by Rykaczewski et al. [115], 

there should be a very careful consideration while selecting the lubricant and working 

fluid combination. The reason that SLIPS have performed well with water is due to the 

large differences in the interfacial surface energies of the lubricant and water, which 

result in very high contact angles and low contact angle hysteresis, thus resulting in a 

very easy droplet removal from condensing surfaces. However, for low surface tension 

fluids, this difference in the interfacial energies is significantly lower, and only select 

number of combinations of lubricants and fluids exist which can potentially make the 

SLIPS work as expected. Hence, this concept, at the present stage, cannot be readily 

employed with any lubricant and working fluid and the choices are currently limited. 

Secondly, the lubricants should have low vapor pressure so that the lubricant does not 

evaporate during the condensation process. It should have a vapor pressure at least less 

the saturation pressure of the working fluid at all times. This further limits the availability 

of appropriate lubricants. In addition, during the actual removal of the condensate during 

the shedding process, there are chances that the lubricant shears off with the shedding 

condensate. Thus, the lubricant might be depleted over time, and the surfaces are plagued 

by the similar wetting problems by the condensate. Since, there are no active methods to 
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replenish the lubricant while in process, the durability of the SLIPS is a major challenge 

with employing these surfaces, even for water, and yet to be addressed.  

Sett et al. [116] further investigated the concept of SLIPS with low surface tension fluids, 

particularly, the issues associated with SLIPS in this regard. They mentioned another 

challenge that limits the choice of SLIPS is the miscibility of the lubricant with the 

working fluid. Sett et al. [116] conducted a number of test with various lubricant and 

working fluid combinations to determine their immiscibility as shown in Figure 1.30. 

They determined that there is only a narrow range of lubricant and working fluid 

combinations that result in effective utilization of SLIPS for condensation of low surface 

tension liquids. 

 

Figure 1.30: Immiscibility tests conducted by Sett et al. [116] to determine working combination of 
lubricant and condensate: (a) insoluble dyes in lubricant, (b-d), immiscibility of Krytox 1525 lubricant with 
water, ethanol and hexane respectively, (e) delayed separation of ethylene glycol with lubricant, and (f) 
completely miscible hexane with lubricant (Copyright of Sett et al. [116]). 
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Sett et al. [116] also investigated another major issue associated with SLIPS, that is, the 

encapsulation of the condensate with the lubricant known as cloaking. Due to low 

interfacial energy differences between viable lubricant and low surface tension fluids, as 

the condensate forms, the lubricant gradually forms a thin layer around the condensate in 

the form of a spherical shell. This cloaked layer offers significant resistance to vapor 

diffusion, thus reduces the droplet growth rate, and hence results in overall poor 

performance of the surface. Figure 1.31 shows the issues associated with SLIPS surface, 

particularly the cloaking issue, as investigated by Sett et al. [116].  

 

Figure 1.31: Conditions for selection of lubricant and working fluid combinations (Copyright of Sett et al. 
[116]). 

Thus, SLIPS, although appear to be a promising approach, have their own challenges and 

further research is need to optimize the utilization of these surfaces.  

Summarizing all the discussions so far, we conclude that there are no effective means yet 

to solve the challenges of enhancing the condensation performances specifically for low 

surface tension liquids. In this thesis, we are attempting to attack this problem from a 

different venue so as to mitigate the issues with SLIPS surfaces and external power 

supplies, and devise a novel, passive method to improve the condensation performance of 

low surface tension liquids. We are looking at utilizing the capillary effect to assist in the 
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condensate removal from the surface along with gravity. The designed surface decouples 

the condensing surface and condensate removal path, and thus significantly enhance the 

condensation heat transfer of low surface tension liquids. This proposed approach 

completely mitigates all the issues faced by SLIPS, can be used for any low surface 

tension liquid if appropriately designed. 
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2 Concept 
As mentioned in the previous chapter, the enhancement in condensation heat transfer has 

been the subject of numerous evolutions over past decades in terms of surface coatings, 

surface modification in the microscale and nanoscale, employment of hierarchical 

structures, and recently the utilization of the jumping droplet effect. However, as 

mentioned previously, all these approaches typically fail with completely wetting low 

surface tension liquids. Although SLIPS has provided a way to improve the condensation 

performance of low surface tension liquids, a new set of limitations and challenges 

associated with SLIPS have hindered the immediate utilization of this approach in 

industry. Therefore, more research is needed before employing SLIPS or other alternate 

approaches for low surface tension liquids. 

In this thesis, we attempt to utilize a capillary assisted condensation surface by 

fabricating novel, porous, 3D structures, on a surface to enhance the rate of condensation. 

The new concept in fact decouples the condensing surface and condensate removal paths.  

We are looking at utilizing the capillary effect to collect the liquid condensed on the 

vapor-exposed surfaces, and then use gravity for assist in the condensate removal. The 

designed surface induces a capillary gradient in the out of plane direction to pull out the 

condensing liquid continuously, and thus significantly reduce the thickness of the 

condensate film on the condensing surface. The new surface consists of alternating 

capillary bridge and plain sections. The liquid condensing in the plain channels and the 

outer surfaces of the capillary bridge is wicked into capillary bridge, effectively 

decoupling the condensation surface and the condensate removal paths. Hence, the 
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knowledge gained from this thesis will serve as basic guideline for designing new simple, 

cost effective, and scalable surface technologies with enhanced condensation heat 

transfer for widely used low surface tension liquids. 

2.1 Capillary Assisted Condensate Removal 

The inspiration for our proposed condensation surfaces comes from the fact that there 

exists a relationship between capillary pressure and size of pores through which a fluid 

flows. Smaller pores induce higher capillary pressure. It is also known that viscous losses 

can overcome the induced capillary pressure at very small pore sizes. The viscous losses 

directly depend on the pore characteristics (i.e., size and length) and flow rate. Therefore, 

there is an optimum feature size at which the wickability effect is maximum. The core 

idea of the current thesis is to employ the wickability effect to enhance the condensation 

rate of low surface tension liquids.  

If a surface is preferentially patterned by porous metallic copper layers, a net out-of-plane 

capillary pressure can be created. This represents an effective and passive means of 

transporting the condensate vapor away from the cooler bottom surface and the side and 

top surfaces of the capillary bridge. We fabricated a capillary-assisted condensation 

surface consisting of alternating plain channels and porous capillary bridges. Due to 

menisci created at the top porous layer and associated capillary pressure, liquid 

condensing on the plain channels and the exposed surfaces of the capillary bridge is 

wicked into the capillary bridges. The liquid wicked into the capillary bridge then flows 

downward due to gravity. The capillary bridges are designed such that the pores in the 
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bridge have a decreasing pore size from the base layer to the tip layer along their height. 

This reduces viscous losses associated with the liquid flow maximizing the wickability 

effect. Due to a steady wicking of the condensing liquid into the capillary bridge, the 

condensate vapor is continuously removed and the vapor-exposed surfaces are fresh for 

further condensation. The entire process thus decouples the condensing surface and the 

condensate removal paths, thereby enhancing the overall condensation heat transfer 

performance.  

The specific design of this surface has been carried out with a focus on improving the 

condensation heat transfer performance of extremely wetting liquids such as Novec 7100 

dielectric fluid with a surface tension of 13.6mN/m. Such low surface tension liquids 

easily spread throughout a condensing surface, thus leading to the filmwise condensation 

mode. The liquid film whose thickness increases as it flows due to gravity acts as a 

thermal barrier reducing the condensation heat transfer performance. Conventional 

methods of promoting the dropwise condensation mode such as low surface energy 

coatings, surface modification of superhydrophobic surfaces with microstructures, nano 

structures or hierarchical structures, enforcing conditions for jumping droplet effect 

typically fail for liquids with low surface tensions such as Novec 7100 dielectric. The 

state-of-the-art approach for low surface tension liquids consists of using lubricant-

infused surfaces to induce the dropwise condensation mode. However, the presence of the 

additional lubricant fluid introduces several unexplored issues such as cloaking and 

lubricant depletion with time, and are yet to be explored. In addition, longevity and 

performance of these more complex approaches in harsh industrial conditions over an 
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extended period need to be examined. Here, we utilize a simple and robust concept of 

capillary-assisted condensation surface to enhance the condensation heat transfer rate of 

completely wetting liquids.  

The capillary length of Novec 7100 fluid is calculated to be 0.962 mm (Appendix A.1). 

The meniscus profile for the liquid is calculated using Young-Laplace equations 

(Appendix A.2) and shown in Figure 2.1. The channel widths of 1 and 2.5 mm were 

chosen during fabrication of condensation surfaces. 

 

Figure 2.1: Meniscus profile of Novec 7100 dielectric as calculated from Young-Laplace equation 
(Appendix A.2). 

The schematic of the condensation surface is shown in Figure 2.2. The condensation 

surface consists of a copper substrate that is 6.25 mm in thickness with a length and 

width of 20 mm each. From the base of the substrate, protruded are five capillary bridges 

with porous layers of varying pore sizes. Each of the bridges are 1.95 mm in height and 2 
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mm in width. The bridges run along the length of the substrate and hence are 20 mm in 

length. The channels in between the bridges are 2.5 mm in width and run along the entire 

length of the substrate. From the schematic, it can be observed that, two porous layers 

immediately bonded to the substrate are of the largest pore size with a pore size of 0.5334 

mm. Following vertically up, bonded to the large pore layers, are two medium pore layers 

with a pore/opening size of 0.2794 mm. Bonded to these medium pore layers are three 

layers of smallest pore size of 0.1778 mm. Finally, one layer with a pore size of 0.1778 

mm is the topmost layer of the surface, which is bonded to the small pore layers. This 

layer is bonded to ease the gravitational removal of the collected droplets. The bridges 

are therefore totally composed of eight porous layers of decreasing diameter from the 

bottom to the top with specifications as provided in Table 2.1.  

Table 2.1: Specifications of the inter-woven copper meshes bonded to the copper 
substrate 

Layer Opening 
(mm) 

Wire Dia 
(mm) 

No. of 
Layers 

Mesh Thickness 
(mm) 

Base - Large Pore 0.5334 0.3048 2 1.2192 

Mid - Medium Pore 0.2794 0.2286 2 0.9144 

Top - Small Pore 0.1778 0.1397 4 1.1176 

Total Expected Mesh Thickness (Base + Mid + Top) 3.2512 

Final Mesh Thickness Resulting from Bonding and Compression 1.95 
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Figure 2.2: Condensation surface geometry: (a) schematic of the designed condensation surface geometry, 
and (b) image of the actual fabricated condensation surface geometry. 

The schematic of the expected condensation process is as shown in Figure 2.3 and Figure 

2.4, which represent cross-sectional top and side views of the condensation surface, 

respectively. 

(a)

(b)
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Figure 2.3: Schematic of the condensation process from the cross-sectional top view of the surface: (a) dry 
surface with the porous layers before subjecting to condensation, and (b) the condensate is wicked into the 
capillary bridge. 

(a)

(b)
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Figure 2.4: Schematic of the condensation process from the cross-sectional side view of the surface: (a) dry 
surface with the porous layers before subjecting to condensation, and (b) the condensate vapor being 
wicked into the capillary bridge, and the simultaneous liquid falling down due to gravity. 

2.2 Capillary Assisted Condensate Removal with a Covering 
Mesh Layer 

To further enhance the rate of condensation of this surface, a cover mesh layer with the 

small pore size is bonded to the tips of the capillary bridges. The top layer mesh provides 

a significantly greater surface area for condensation to take place. Since this cover layer 

will be of the same dimensions as the entire surface, it forms a cover over the entire 

surface. It is bonded to the tips of the capillary bridges and forms a porous cover for the 

(a) (b)



32 

channels as shown in Figure 2.5. Since the pores of this layer are of the same order of the 

capillary bridge, this layer does not cause any hindrance for the capillary assisted 

condensation process as described in the previous section. The schematic of the proposed 

cover mesh is shown in Figure 2.5. It is to be noted that the actual cover mesh bonded 

surface shown in Figure 2.5 is for a different condensation surface fabricated with 

different mesh layers and dimensions compared to the surface shown in Figure 2.2. It 

should be also noted that the surface in Figure 2.5 was initially intended to be fabricated 

with only different mesh configurations and channel widths. The added cover mesh layer 

was not expected to provide a significant increase in condensation, but in fact, it is later 

proved to be a major factor. The schematic of the expected condensation process is 

shown in Figure 2.6 and Figure 2.7. 
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Figure 2.5: Schematic of the cover mesh bonded condensation surface with dimensions: (a) schematic of 
the designed condensation surface geometry, and (b) image of the actual fabricated condensation surface 
geometry. 

 

Figure 2.6: Schematic of the condensation process for the cover mesh bonded surface observed from the 
cross-sectional top view: (a) dry surface with the porous layers before subjecting to condensation, and (b) 
the condensate vapor being wicked into capillary bridge. 

(a)

(b)
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Figure 2.7: Schematic of the condensation process for the cover mesh bonded condensation surface as 
observed from the cross-sectional side view: (a) dry surface with the porous layers before subjecting to 
condensation, and (b) the condensate vapor being wicked into the capillary bridge, and the simultaneous 
liquid falling down due to gravity. 

(a) (b)



35 

3 Fabrication 
The major fabrication work for this thesis involved the fabrication and assembly of the 

heat exchanger module used for the condensation experiment and finally the fabrication 

of the designed condensation surface. 

3.1 Condensation Surface 

The final condensation surface resulted from three manufacturing steps, where included 

the cutting/machining of the individual parts, diffusion bonding of the copper mesh layers 

to the copper substrate, and machining of channels in the copper mesh surface. 

3.1.1 Preparation of the Individual Parts 

The required copper substrate piece was cut from a 6" length, 3" wide, 1/4" thick 

commercially pure (99.9% pure) stock copper block (Copper Plate, McMaster) using a 

band saw. The copper substrate piece was then machined using a milling machine to the 

dimensions of 20 mm x 20 mm x 6.25 mm. Copper mesh pieces each of 25 mm x 25 mm 

were cut from three different copper mesh swatches depending on their pore size. Two 

mesh pieces from the large pore mesh (30 Mesh Copper 0.012, TWP Inc.); three mesh 

pieces from the medium pore mesh (50 Mesh Copper 0.009, TWP Inc.) and three mesh 

pieces from the small pore mesh (80 Mesh Copper 0.0055, TWP Inc.) were cut. The 

copper substrate was then made smooth by cleaning with a fine sand paper and washed 

with acetone to remove any surface oxide layer or impurities present on the surface. The 

eight copper mesh pieces were subjected to similar cleaning with acetone to obtain clean 

surface before placing them in the copper diffusion bonding setup. The image of the 20 

https://www.mcmaster.com/#8964K24
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mm x 20 mm copper substrate and the 25 mm x 25 mm large pore copper mesh is shown 

in Figure 3.1. 

 

Figure 3.1: Image of the precisely machined and cleaned copper substrate (left), and the inter-woven copper 
mesh pieces cut to the required dimensions (right). 

3.1.2 Cu-Cu Diffusion Bonding 

A number of experimental trials were performed with varying sizes of copper substrates 

and copper meshes, varying levels of clamping forces, varying levels of vacuum to 

finally arrive at proper working conditions to obtain a clean, oxide-free, and durable 

bonding of the copper meshes to the copper substrate. The results of some of the trials are 

provided in Figure 3.2. 

 

Figure 3.2: Progress of the experimental trials to arrive at a functional bonding of the copper meshes to the 
substrate: (a) beam clamped setup in partial vacuum with one mesh layer, (b) beam clamped setup in partial 
vacuum with 2 mesh layers, (c) bench vice clamped setup with 6 mesh layer in partial vacuum (oxidation), 
and (d) bench vice clamped setup in low vacuum with 6 mesh layers. 



37 

The prepared copper meshes and substrate were placed such that the copper substrate 

forms the base followed by two large mesh pieces, two medium mesh pieces, three small 

mesh pieces, and finally one small mesh piece. The copper mesh setup was placed 

between two steel plates of 6"x3"x1/2" and clamped in a bench vice. The bench vice was 

tightened to about 3500 lbs of clamping force. The steel blocks were equipped with 

heaters. The heaters provided the necessary heat for the diffusion bonding. In addition, 

the steel block consisted of a hole in which a probe thermocouple is inserted to monitor 

the real-time temperature of the setup during the bonding process. The entire setup, with 

the copper substrate, meshes; steel blocks, heaters, thermocouple, and bench vice were 

placed in a vacuum chamber. Necessary electrical connections were made through 

thermocouple and electrical feedthrough inside the vacuum chamber. The setup was 

sealed and vacuumed using a vacuum pump. The temperature of the setup was slowly 

increased at the rate of around 5⁰C/min by increasing the voltage input to the heaters. 

Once the bonding was completed, the setup was cooled by cutting off the voltage to the 

heaters. The low pressure of the chamber was maintained during the cooling process to 

prevent copper oxidation. The chamber was then pressurized to atmospheric pressure. 

The process described above converged from a number of trials and results in a clean, 

oxide free, and highly durable diffusion bonding of the copper meshes to each other and 

the copper substrate. The resulting diffusion bonded copper substrate-mesh surface at the 

microscopic level is shown in Figure 3.3. 
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Figure 3.3: Diffusion bonded copper substrate-mesh surface: (a) overview of the substrate-mesh surface, (b, 
c) microscopic images of the large copper meshes bonded to the substrate at the free edges, (d) microscopic 
image of the small copper mesh at the top free edges, (e, f) microscopic image of top view, and (g, h) 
microscopic images of the machined channel side walls. 

3.1.3 Machining of Channels on the Copper Mesh Surface 

Since the initial copper mesh pieces were 25 mm x 25 mm, the extra projections of the 

copper mesh from the sides were cut out using a metal cutter tool so that the final surface 

was simply a 20 mm x 20 mm block. The total mesh layer thickness after diffusion 

bonding was measured to be 1.95 mm from the substrate surface. A CAD model of the 

required machined surface was generated using SolidWorks and the corresponding G-

code for the design, to be used in a CNC machine, was generated in NX. The required 

channels of 2.5 mm width and 1.95 mm deep were machined using a 1/16" end mill with 

a feed-rate of 0.2 mm depth per cut and the end mill spindle speed of 1800 rpm. A hole of 

1.5 mm diameter and 10 mm depth was drilled at the mid of point of the thickness into 

the base of the copper substrate where a thermocouple could be inserted to measure the 

temperature of the top surface of the channel during condensation. The side of the bridges 

or the banks of the channels, after machining the required channels, would usually be 

partially closed due to the shearing of the copper mesh material. As this would prevent 
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our surface from functioning as expected, the pores are thus re-opened. This is done by 

rinsing the machined surface in a solution of copper etchant (Ferric Chloride Copper 

Etchant) for intermittent periods of 30 seconds each followed by rinsing in DI water. The 

final working condensation surface is shown in Figure 3.4. 

 

Figure 3.4: Final condensation surface: (a) side walls of the machined channels with pores opened-up after 
copper etchant rinsing, and (b-e) various orientations of the condensation surface. 

3.2 Condensation Surface with Cover Mesh 

The condensation surface with the cover mesh layer was fabricated with the exact same 

manufacturing process and steps as those described in Sections 3.1.1, 3.1.2 and 3.1.3. The 

mesh configuration for this layer comprised of two large pore meshes, two medium 

meshes and two small meshes, in this exact order, starting from the base substrate. All 

meshes are 25 mm x 25 mm with configurations described in Table 3.1. The process for 

bonding these meshes to the copper substrate was the same process as described in 

Sections 3.1.1 and 3.1.2. The bonded copper mesh substrate was machined with the same 

process as described in Section 3.1.3, but with channel widths of 1 mm. Since the initial 

https://www.amazon.com/Ferric-Chloride-Copper-Etchant-Solution/dp/B00E4WJLVE
https://www.amazon.com/Ferric-Chloride-Copper-Etchant-Solution/dp/B00E4WJLVE
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bonded mesh layer was 1.3 mm in thickness, the channels were machined only up to a 

depth of 1.3 mm. The mesh surface was rinsed with copper etchant as described 

previously to open up the pores on the sidewalls of the capillary bridges. Now, a second 

diffusion bonding was performed to bond a small pore size cover mesh layer onto the tips 

of the capillary bridges with the same procedure as described in Section 3.1.2. The total 

mesh thickness after the second bonding was determined to be 1.75 mm. The final 

working condensation surface with cover mesh is shown in Figure 3.5. 

Table 3.1: Specifications of the inter-woven copper meshes bonded to the copper 
substrate in the case of the surface with cover mesh layer 

Layer Opening 
(mm) Wire Dia (mm) No. of Layers 

Mesh 
Thickness 

(mm) 

Base - Large Pore 0.5334 0.3048 2 1.2192 

Mid - Medium Pore 0.2794 0.2286 2 0.9144 

Top - Small Pore 0.1778 0.1397 2 0.5588 

Cover - Small Pore 0.1778 0.1397 1 0.2794 

Total Expected Mesh Thickness (Base + Mid + Top + Cover) 2.9718 

Final Mesh Thickness Resulting from Bonding and Compression 1.75 
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Figure 3.5: Final condensation surface with cover mesh: (a) condensation surface with the cover mesh 
layer bonded, and (b-e) various orientations of the condensation surface with cover mesh. 

3.3 Heat Exchanger 

The heat exchanger designed for our condensation surface was fabricated by a three step 

manufacturing process including the machining of individual parts, brazing to seal the 

parts, and assembly to the liquid feedthrough of the vacuum chamber.  

3.3.1 Machining of Individual Parts 

A copper stock block of 2" x 2" x 1" was machined to the required size of 50.8 mm x 

50.8 mm x 19.05 mm. Channels of 5.08 mm width and 11.68 mm depth with banks of 

1.02 mm width were machined on this block to provide a serpentine path for the flow of 

the cooling liquid. This design resulted in seven channels along the length of the heat 

exchanger with a serpentine channel flow path increasing the total flow length of the 

cooling fluid and also increasing the surface area for heat transfer on either sides of the 

banks effectively enhancing the performance of the cooling block. The walls of the heat 



42 

exchanger were 4.57 mm thick. The CAD model of the heat exchanger main body along 

with all the dimensions is as shown in Figure 3.6. 

 

Figure 3.6: CAD model of the main body of the heat exchanger 

The top surface of the heat exchanger was enclosed by a machined cover plate of size 

45.72 mm x 45.72 mm x 2.03 mm. To accurately measure the heat added to the 

condensation surface during condensation, a 1D-heat transfer column of dimensions of 10 

mm x 10 mm x 28.7 mm was fabricated. Three equidistant holes of 1.5 mm diameter and 

5 mm depth were drilled into the center of the 1D column along the height of the column. 

Three thermocouples were inserted into these three equidistant holes to monitor the 

temperatures at these positions in real-time. Since the width of the 1D column was less 

compared to its height, the lateral heat transfer can be neglected and assumed that heat 

conduction happens only along the height of the column. By measuring the temperature 

differences between these three points, the heat flux along the height of the column and 

hence the condensation surface can be accurately measured. The CAD model of the cover 

plate and 1D column are shown in Figure 3.7. 
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Figure 3.7: CAD model of the cover plate (left) and the 1D column (right). 

3.3.2 Assembly of Heat Exchanger 

Since 1D column, cover plate, and steel pipes have to be individually brazed to the heat 

exchanger main body, the brazing process was carried out in three stages to assemble the 

heat exchange module. 

The cover plate of the heat exchanger was attached to the main body by a high 

temperature brazing process to make an airtight seal along the top surface perimeter of 

the block as shown in Figure 3.9. The cover plate was centrally placed on top of the heat 

exchanger main body and the setup is heated to about 870⁰C and maintained at that 

temperature. At this point, a high melting point cadmium rod enclosed with the flux 

material was applied along the perimeter of the block at the junction of the cover plate 

and main body. The cadmium rod continuously melts as it is being applied at the 

junction, forms a neat fillet at the junction, and hence seals the cover plate to the main 

body. 
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The main body of the heat exchanger had 2 holes drilled at the left bottom corner and the 

right top corner coinciding with the inlet and the outlet of serpentine channel flow path of 

the cooling liquid inside the body of the block (as shown in Figure 3.8). Two steel pipes 

of 1/4" diameter and 7" length were brazed to the inlet and outlet holes of the heat 

exchanger using the same brazing process as above but by using a low melting point 

cadmium rod where the setup was heated to about 610⁰C. This was done so that the 

setup does not reach 870⁰C; otherwise, there was a good chance that the previously 

brazed cover plate and main body could detach. Similarly, the fabricated 1D column was 

brazed to the cover plate at the center using the same low temperature brazing process as 

before. Since only the top surface of the cover plate was carefully heated to about 

610⁰C, the temperature at the bottom of the main body was slightly lesser than 610⁰C. 

This ensured that only the cadmium material at the junction of the 1D column and cover 

plate melted to form a neat fillet while the previously brazed steel pipe and main body 

junction remained intact. Thus, the heat exchanger module was assembled using a three 

stage brazing process. The CAD model of the designed heat exchanger is shown in 

Figure 3.8. The schematic of the final assembled heat exchanger with the designed 

dimensions is shown in Figure 3.9. The fabricated, brazed, and assembled heat exchanger 

module is shown in Figure 3.10.  
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Figure 3.8: CAD model of the designed heat exchanger assembly. 
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Figure 3.9: Schematic of the assembled heat exchanger module with dimensions. 
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Figure 3.10: Fabricated, brazed, and assembled heat exchanger module: (a, b) heat exchanger with the 
brazed main body, cover plate, 1D column and feed pipes, and (c, d) heat exchanger with the condensation 
surface soldered and covered with the first stage of insulation (kapton tape and duct-tape). 

The fabricated condensation surface was attached to the top of the 1D column using a 

simple low temperature soldering process. A low temperature solder material with a 

melting point of 240⁰C is placed between the top surface of the 1D column and bottom 

surface of the condensation surface and the setup is heated. This results in an air gap free 

soldering of the condensation surface to the 1D column. This represents an easy 

mechanism for detaching and attaching of various condensation surfaces to the 1D 

column. 

3.3.3 Fixing the Heat Exchanger to the Liquid Feedthrough 

The liquid feedthrough of the vacuum chamber consisted of four 1/4" pipes with attached 

1/4" Swagelok connectors. The steel pipes of the heat exchangers were double bent to 

coincide with two pipes of the liquid feedthrough, inserted into the Swagelok connectors, 
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and tightened to form airtight seals. The liquid feedthrough was connected to the vacuum 

chamber through KF40 connections. The entire assembly thus resulted in a separate, 

tightly sealed loop for the cooling fluid isolated from the rest of the chamber.   
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4 Experimental Setup and Operation 
Considering the extensive research that has been carried out over the past few decades on 

phase change heat transfer, a major hurdle and stumbling block for the progress of this 

research has been the validation of the results, repeatability of the results, and non-

conforming of the results carried out by various research groups for the same 

experimental conditions. The reason for such a discrepancy of the results has been the 

non-uniform methods of measurement employed in collecting the data. One of the major 

factors affecting the experimental results has been the effect of presence of non-

condensable gases close to the condensing surface, which provides an effective thermal 

barrier for condensation.  

Colburn et al. [104] were among some of the early researchers who worked on 

understanding the effect of non-condensable gases on condensation. Rose et al. [14] and 

Citakoglu et al. [117] studied the errors in measurement resulting from the presence of 

non-condensable gases at the condensation surface and showed that the results were 

hugely affected by the presence of even very small quantities of non-condensable gases at 

the interface. In the studies conducted by Sparrow et al. [118] on laminar film 

condensation, very small quantities of non-condensable gases showed significant 

reduction in heat transfer. Denny et al. [119] investigated analytically the effect of 

various species of mixtures containing non-condensable gases. Condensation in 

enclosures represents situations where the concentration of non-condensable gases 

increases at the condensing surface and hence has greater significance on heat transfer as 

showed by Wang et al. [120]. Similarly Kageyama et al. [121] provided resistance 
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network models to correlate the experimental data. As the condensation proceeds, the 

vapor containing the non-condensable gases is brought closer to the surface. As a result, 

the concentration of these gases at the condensing surface increases. Due to concentration 

gradient established, the gases diffuse away from the surface into the vapor in the 

immediate vicinity. The condensing surface is therefore deprived of vapor and hence the 

rate of condensation decreases greatly.  To further understand this phenomenon, Thiel et 

al. [122] studied the effect of high concentrations of non-condensable gases at the 

condensing surface. A number of other research groups have also actively pursued the 

understanding of the effect of varying concentrations and species of non-condensable 

gases on various geometries [123-130]. Most of the research indicates that the true 

performance of a surface in phase change heat transfer can be gauged uniformly only in 

the absence of these non-condensable gases. 

Hence, the condensation experimentation was carried out in vacuum to remove the effect 

of any non-condensable gases and maintain the consistency of the measured data. To 

accurately measure the heat flux through the 1D column, one critical criteria is to prevent 

any external heat addition to the 1D column through its side faces. By ensuring heat 

conduction through the 1D column occurs only due to its interactions between the cover 

plate and the condensation surface and not its lateral faces, we can conclude that 

temperatures differences between the three thermocouples along the 1D column are 

caused only due the heat addition from the condensation surface, which directly reflects 

the rate of condensation. In addition, to effectively utilize the cooling effect of the coolant 

only for the condensation surface, we have to ensure there is no external heat addition to 
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the heat exchanger from elsewhere and that condensation does not occur anywhere on the 

heat exchanger. Both of the above-described effects can be achieved by providing a very 

good insulation around the heat exchanger, especially around the 1D column. The heat 

exchanger surfaces and the 1D column were covered by three layers of kapton tape to 

serve as the first stage of insulation. For the second stage, we used thick layers of stone 

wool with a thermal conductivity of 0.03 W/m.K. A one-inch-thick layer of stone wool 

was wrapped around all the surfaces of the heat exchanger and packed tightly around the 

1D column. The stone wool was held in place by wrapping seven to eight layers of duct-

tape around the stone wool, which serves as the third stage of insulation. The lateral and 

bottom surfaces of the condensation surface were also covered to prevent condensation 

on these faces.   

4.1 Condensation Test Setup Components 

The condensation test setup consisted of a vacuum chamber, the insulated heat-

exchanger, and condensation surface assembly, Novec 7100 / Water (working fluid), 

thermocouples, pressure transducer, piping for cooling water flow, data acquisition 

system for measuring real-time temperature, multimeter to measure the voltage from the 

pressure transducer, copper heating block with cartridge heaters and an insulation brick 

on which the entire test setup is placed.  

4.1.1 Vacuum Chamber 

The vacuum chamber used for the condensation experiment was a stainless steel structure 

that resembles a 4" diameter cross-junction pipe. The chamber was 10" in length, 6" in 
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width, and 10" in height. It consisted of four ISO100 type connections and a KF25 type 

connection. An ISO100 type glass viewport was fixed to the ISO100 junction closest to 

the condensation surface. A stainless steel cross-junction pipe with four KF40 type 

connections, a stainless steel T-junction pipe with three KF40 type connections, and an 

ISO100 to KF40 adapter were employed in conjunction with the vacuum chamber to 

attach the other required parts and assemble a functional setup. All components to be 

attached to vacuum chamber were such that they have KF40 connections, which can be 

securely connected using KF40 O-rings and KF40 clamps and seal them airtight. The 

vacuum chamber is shown in Figure 4.1. 

 

Figure 4.1: Vacuum chamber with the viewport and KF40 T-junction. 

4.1.2 Thermocouples and Data Acquisition System 

Five thermocouple probes were used to measure working temperatures of the test setup. 

The thermocouple were calibrated by a constant temperature bath to an accuracy of ±0.2 

K before the experiments. Three thermocouples were inserted into the three pre-drilled 

holes in the 1D column. One thermocouple was inserted into the hole drilled in the 

condensation surface to measure the surface temperature of the condensation surface. 
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One thermocouple was placed in the Novec 7100 fluid to measure temperature of the 

liquid during the experiment. Two more thermocouples were inserted into ¼" pipes of the 

heat exchanger module to measure the inlet and outlet cooling water temperatures. The 

five thermocouples inside the vacuum chamber were connected internally to a ten-pin 

thermocouple feedthrough. The pins on the atmospheric side of the thermocouple 

feedthrough and the two thermocouples inserted in the heat exchanger were all connected 

to an Agilent/HP 34972A LXI Data Acquisition Switch Unit, which displays and records 

the real-time temperatures of all the thermocouples. The thermocouples and the data 

acquisition system used are shown in Figure 4.2. 

 

Figure 4.2: Thermocouples (left), and the data acquisition system (right) used in the experiment. 

4.1.3 Pressure Transducer, DC Power Source, and Multimeter 

A high accuracy silicon pressure transducer with a steel diaphragm was mounted on one 

of the free pipes in the liquid feedthrough to measure the saturation pressure of the fluid 

during the experiment. The absolute pressure transducer used was an Omega PX309 

model with pressure measuring range of 0 kPa to 101.325 kPa (0 to 15 psi). The sensor 

takes an excitation voltage of 10 V and provides an output voltage of 0 mV to 100 mV 
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corresponding to a pressure of 0 kPa to 101.325 kPa respectively. The pressure 

transducer comes with a ¼" 18 – MNPT connection and hence a Swagelok junction with 

a ¼" 18 – FNPT connection at one end, was used to mount the pressure transducer 

vertically on the liquid feedthrough pipe. A DC power source device was used to provide 

the excitation voltage and a Keithley 2700 Multimeter/Data Acquisition System was 

utilized to measure the output voltage of the pressure transducer. The combination of the 

high accuracy multimeter and pressure give precise values of the saturation pressure of 

the fluid in real-time. The effect of the condensate on the measuring diaphragm was 

negligible as the pressure readings were consistent with prolonged usage and varying 

stages of condensation. The pressure transducer, dc source and multimeter used to 

measure the pressure are shown in Figure 4.3. 

 

Figure 4.3: Pressure transducer - PX309-015AV model (left) with the DC power source (mid) and the 
Keithley 2700 multimeter (right). 

4.1.4 Heating Block and Cooling Water 

A copper block with holes drilled to house two 250 W cartridge heaters was used to heat 

the Novec 7100 and Water fluids to generate vapor during the experiment. The copper 

heating block was placed on an insulation brick to avoid loss of heat and effectively 

utilize the heat output of the block. The vacuum chamber was placed on the copper 

heating block to ensure close contact of the block with the setup. The inlet and outlet 
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pipes of the liquid feedthrough were connected to a constant temperature water supply, 

which functions as the coolant. As a result, the inside of the heat exchanger with the 

liquid feedthrough pipes form a separate, isolated, cooling loop which was always at 

atmospheric pressure irrespective of the pressure inside the vacuum chamber.  

4.1.5 Novec 7100 Dielectric Fluid 

Novec 7100 dielectric fluid was used as the low surface tension working fluid in this 

experimentation. The fluid has a low surface tension of 13.6 mN/m and serves as an ideal 

fluid to display the effectiveness of the fabricated condensation surface due to its extreme 

wetting characteristics. About 250 ml of the fluid is filled in the vacuum chamber for the 

experimentation. Salient properties of Novec 7100 are provided in Table 4.1. 

Table 4.1: Specifications Properties of Novec 7100 Dielectric Fluid 

Property Unit Value 

Boiling Point ⁰C 61 

Vapor Pressure kPa 27 

Heat of Vaporization kJ/kg 112 

Liquid Density Kg/m3 1510 

Vapor Density 8.6 x 1.225 
kg/m3 (air) 10.535 

Kinematic Viscosity cSt 0.38 

Absolute Viscosity cP 0.58 

Specific Heat J/kg-K 1183 

Thermal Conductivity W/m-K 0.069 

Surface Tension mN/m 13.6 
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4.2 Assembly of the Experimental Setup 

Vacuum chamber formed the main body of the experimental setup to which all other 

components were attached. The schematic and actual assembled condensation 

experimental setups are shown in Figure 4.4 and Figure 4.5, respectively. The left limb 

ISO100 connection was fixed with a glass viewport to visualize the surface during 

condensation. Novec 7100 fluid was filled in the bottom limb of the vacuum chamber as 

shown (Water is filled in case of testing with water). The top and bottom ISO100 

connection were closed with ISO100 steel caps and O-rings to seal them airtight. The 

right lib of the chamber was connected to an ISO100 to KF40 adaptor. The KF40 

junction of the adaptor was connected to a KF40 cross-junction pipe on the right. The 

liquid feedthrough was fixed through the KF40 cross-junction as shown in the figure. 

One of the remaining KF40 ends of the cross-junction was connected to the thermocouple 

feedthrough. The pressure transducer was mounted on a free pipe of the liquid 

feedthrough. The inlet and outlet pipes of the feedthrough were connected to a constant 

temperature water supply and sink respectively. The entire setup was placed on the 

copper heating block. The cartridges heaters in the heating block were connected to a 

variac. The thermocouple feedthrough pins were connected to the Agilent data 

acquisition system using the same thermocouple wire material as the one used inside the 

chamber. The pressure transducer was connected to the DC power source and Keithley 

multimeter to complete the assembly of the condensation experimental setup.  
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Figure 4.4: Schematic of Condensation Experimental Setup. 

 

Figure 4.5: Assembled condensation test setup. 

4.3 Operation 

Once the test setup was assembled, the chamber was vacuumed to well below the 

saturation pressure of the liquid calculated from the liquid temperature readings. This was 

typically around 20 kPa for a temperature of about 23⁰C for the Novec 7100 Fluid 

(around 2.81 kPa for a temperature of about 23⁰C for water). Then, the pressure was 

reduced even further, for example, to a value of 15kPa for Novec (1kPa for Water), to 

remove any non-condensable gases to the maximum extent possible. The loss of the 

evaporated fluid due to lower pressures was considered during the initial charging 
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process. The temperature and pressure measurement devices were activated to obtain 

real-time temperature and pressure readings of the setup. Initially, due to low pressures 

inside the chamber, the temperature of the fluid dropped to match the saturation 

temperature corresponding to the pressure inside the chamber. The evaporation 

continuously increased inside the chamber as external heat was added to the chamber to 

bring the chamber close to room temperature. The cooling water supply was turned on 

and a voltage of about 20 V is supplied to the heating block. The entire setup reaches an 

equilibrium with the constant temperatures being displayed for all the thermocouples 

connected. This initial process takes about 1.5 hours. The thermocouples in the 1D 

column showed a constant difference in temperature between them indicating the heat 

flux that is being added to the condensation surface during condensation. The cooling 

water inlet and outlet temperatures also showed a constant difference indicated the rate of 

heat addition to the heat exchanger is also constant. The temperature and pressure 

readings and the flowrate of the cooling fluid were recorded at this equilibrium state. The 

voltage of the heating block was further increased by 10V keeping all other parameters 

constant. As a result of this, the rate of evaporation increases due to the increased heat 

added from the heating block. The temperature of the cooling water would remain the 

same with negligible variation in temperature. After a while, a new equilibrium state was 

established. The setup takes about 0.5 to 0.75 hrs to reach the new equilibrium state. 

Temperatures and pressure are recorded at this state, the voltage of the heating block was 

further increased by 10V, and the process continued. Recordings showed that with 

increase in the heat addition, the temperature difference in the 1D column and thus the 

rate of condensation increased. 
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4.4 Uncertainty Analysis 

Uncertainty analysis is performed to determine the possible error ranges, for all the 

measured and calculated values, depending on the accuracies of the all the measuring 

devices. The final results in the following sections are reported by incorporating the 

results of the uncertainty analysis, in the form of error bars, so as to account for possible 

uncertainties in the temperatures measured and subsequent calculations of heat fluxes, 

heat transfer coefficients and equivalent film thicknesses. The formulae used for the 

uncertainty analyses are as shown below. 

The uncertainty in the measurements provided by the thermocouples is taken as 𝛿𝛿𝑇𝑇 =

±0.2𝐾𝐾 and the accuracy in the dimensions of the precision-machined parts, such as the 

fabricated condensation surface, 1D column, heat exchanger assembly etc. are taken as 

𝛿𝛿𝐻𝐻 = ±0.00015𝑚𝑚. 

The uncertainty in the calculation of heat flux values is performed as 
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The uncertainty in the calculation of equivalent film thickness values is performed as 
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5 Results and Discussion 
The condensation experiment was performed for three surfaces; a plain copper substrate 

without the copper meshes (dimensions were the same as those shown in Figure 2.2, but, 

without the copper meshes); the condensation surface fabricated with capillary bridges 

exactly as shown in Figure 2.2; and finally the condensation surface with capillary 

bridges and the additional top cover mesh layer as shown in Figure 2.5. All three surfaces 

were tested with Novec 7100 Fluid and Water giving a total of six test case results. The 

temperature and pressure readings along with the cooling water flow rates were recorded 

during each experiment. The condensation performance for each test case was measured 

by calculating the respective heat flux through the condensation surface for various 

temperature driving potentials, i.e., the difference in the saturated temperature and the 

surface temperature. 

The critical parameter of heat flux was calculated through two methods. The first method 

was the conventional method of determining the inlet and outlet temperatures of the 

cooling water through the heat exchanger and determining the flow rate of the cooling 

water. A separate dry test (i.e., without condensing vapor) determined heat loss at each 

surface temperature. The rate of heat removal by the cooling water thus gives a measure 

of the rate of latent heat added to the condensation surface and hence the heat flux of the 

surface can be calculated using the below formula: 

𝑞𝑞" =
�̇�𝑚 × 𝐶𝐶𝑝𝑝 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) − 𝑞𝑞𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠

𝑆𝑆𝑓𝑓𝑠𝑠𝑓𝑓𝐻𝐻𝑐𝑐𝐻𝐻 𝐴𝐴𝑠𝑠𝐻𝐻𝐻𝐻
=
�̇�𝑚 × 𝐶𝐶𝑝𝑝 × (𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) − 𝑞𝑞𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠

𝐴𝐴
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The surface temperature of the condensation surface was obtained by extrapolation of the 

temperature reading of thermocouple at the center of condensation surface. The saturation 

temperature of the working fluid was calculated from the saturation pressure reading.  

The second method of determining the heat flux was based on the temperature 

differences in the 1D column. The rate of heat conduction through the copper 1D column 

gives a more accurate measure of the rate of latent heat of condensation added to the 

surface during the process. The heat flux of the surface can be calculated using the 1D-

column temperatures using the below formula: 

𝑞𝑞" = 𝑘𝑘
∆𝑇𝑇𝑠𝑠
𝐿𝐿

 

We have observed that heat flux calculated based on the above methods are close and 

hence either of the methods is suitable for the heat flux calculations.  

The results of the six test cases are provided in the following sections. In the following, 

the condensation surface initially fabricated without the covering top mesh is referred to 

as 'surface 1' and the surface fabricated with the additional cover mesh layer is referred to 

as 'surface 2'. 

5.1 Performance Comparison of Water 

Figure 5.1 shows the heat flux of the plain surface and surface 1 at different subcooling 

temperatures (i.e., Tsat-Tsurface) for condensate water vapor. The results indicate a linear 

trend where the heat flux, and hence, the rate of condensation increase at higher 

subcooling temperature potential for both surfaces. It can be also seen that the surface 1 
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has a better heat flux compared to the plain surface. For instance, the heat flux of the 

surface 1 is increased by around 47% compared to the plain surface at a subcooling 

temperature of 4°C. The increase in the condensation heat flux is believed to be due to 

the induced capillary assisted effect combined with the gravitationally driven flow of the 

condensate vapor along with the added surface area for condensation process through the 

bonded copper meshes. However, the present capillary assisted condensation surfaces 

were particularly designed for low surface tension liquids, and not for water. The 

capillary length of water is ~2.7 mm, which is higher than the distance between the 

capillary bridges. This results the condensate water vapor to remain filled in the channels 

between the capillary bridges. Therefore, the present capillary assisted condensation 

surfaces probably underperform compared to a capillary assisted condensation surface 

optimized for water.   
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Figure 5.1: Heat flux of the plain surface and the capillary assisted condensation surface 1 at different 
subcooling temperatures for condensate water vapor. 

The capillary assisted condensation surface 2 fabricated with an additional top cover 

layer compared to surface 1 is also observed to perform better than the plain surface as 

shown in Figure 5.2. Here, a similar linear trend of increasing heat flux with subcooling 

temperature is observed. Although not specifically designed for water, both the fabricated 

surfaces showed an improved condensation performance compared to a plain surface. 

Surface 2 has a higher heat flux of around 82% when compared to the plain surface at a 

subcooling temperature of 4°C. A higher condensation heat transfer of surface 2 

compared to surface 1 is attributed to the additional condensation area available through 

the top cover layer mesh. Although both of these surfaces ultimately result in filmwise 

condensation at high subcooling temperatures, the presence of the cover layer and a lower 

distance between the capillary bridges seem to significantly improve the performance of 

surface 2. The heat fluxes observed in surface 2 are greater than those observed in surface 

1 by a factor of 1.75, at a subcooling temperature of 4°C. The comparison of heat fluxes 

for all the surfaces are provided in Figure 5.2. 
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Figure 5.2: Heat flux of the plain surface and the capillary assisted condensation surface 1and 2 at different 
subcooling temperatures for condensate water vapor. 

Heat transfer coefficient for both the working fluids and all three surfaces can be 

calculated from the below formula: 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝑠𝑠𝐻𝐻𝑐𝑐𝑐𝑐𝑓𝑓𝐻𝐻𝑠𝑠 𝑐𝑐𝑜𝑜𝐻𝐻𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝐻𝐻𝑐𝑐𝐻𝐻 �
𝑘𝑘

𝑚𝑚2 − 𝐾𝐾
� =

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓 �𝑘𝑘𝑚𝑚2�

𝑆𝑆𝑓𝑓𝑆𝑆𝑐𝑐𝑜𝑜𝑜𝑜𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 [𝐾𝐾] → ℎ �
𝑘𝑘

𝑚𝑚2 − 𝐾𝐾
� =

𝑞𝑞" �𝑘𝑘𝑚𝑚2�

∆𝑇𝑇[𝐾𝐾]  

The heat transfer coefficients of surface 1 and surface 2 in comparison to the plain 

surface are provided in Figure 5.3. It can be observed that the heat transfer coefficients of 

all three surfaces are typical of filmwise condensation. Although, not specifically 

designed for water, we can observe that heat transfer coefficients of both surface 1 and 2 

are higher compared to the plain surface. This increase can be attributed to the increased 

surface area and also wicking of the condensate into the capillary bridges. At a 
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subcooling of  4⁰C, we can clearly see that the heat transfer coefficient of plain surface is 

around 4000 W/m2-K while surfaces 1 and 2 show higher coefficients of around 6000 

W/m2-K and 8500 W/m2-K respectively, with a performance increase of 50% for surface 

1 and an increase of more than 100% for surface 2. 

 

Figure 5.3: Heat transfer coefficient comparison of plain surface with surface 1 and surface 2 (water). 

The equivalent liquid film thickness for both the working fluids and all three surfaces can 

be calculated from the below formula: 

𝐸𝐸𝑞𝑞𝑓𝑓𝑐𝑐𝑐𝑐𝐻𝐻𝑓𝑓𝐻𝐻𝑐𝑐𝐻𝐻 𝑓𝑓𝑐𝑐𝑞𝑞𝑓𝑓𝑐𝑐𝑐𝑐 𝑓𝑓𝑐𝑐𝑓𝑓𝑚𝑚 𝐻𝐻ℎ𝑐𝑐𝑐𝑐𝑘𝑘𝑐𝑐𝐻𝐻𝑐𝑐𝑐𝑐[𝑚𝑚]

=
𝑇𝑇ℎ𝐻𝐻𝑠𝑠𝑚𝑚𝐻𝐻𝑓𝑓 𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑓𝑓𝑐𝑐𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝐻𝐻𝑐𝑐 𝑜𝑜𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐 � 𝑘𝑘

𝑚𝑚 − 𝐾𝐾� ×  𝑆𝑆𝑓𝑓𝑆𝑆𝑐𝑐𝑜𝑜𝑜𝑜𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐 [𝐾𝐾]

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓 �𝑘𝑘𝑚𝑚2�
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𝐻𝐻𝑠𝑠[𝜇𝜇𝑚𝑚] =
𝑘𝑘 � 𝑘𝑘
𝑚𝑚 − 𝐾𝐾� × ∆𝑇𝑇 [𝐾𝐾]

𝑞𝑞"  �𝑘𝑘𝑚𝑚2� × 1000000
 

The equivalent liquid film thickness during condensation of water vapor on all 

investigated surfaces is shown in Figure 5.4. The equivalent liquid film thickness 

provides a general understanding on the thickness range of liquid films present during the 

condensation process. It is evident that the average equivalent film thicknesses are lower 

for both surfaces 1 and 2 compared to the plain surface. At a subcooling of 4⁰C, we can 

observe that the equivalent falling film thickness is 140 microns for plain surface, which 

subsequently decreases to around 90 microns, and 60 microns for surfaces 1 and 2, 

respectively. 

 

Figure 5.4: Equivalent liquid film thickness for plain surface, surface 1, and surface 2 (water). 
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5.2 Performance Comparison of Novec 7100 Fluid 

Novec 7100 fluid has a capillary length of 0.96 mm (Appendix A.1). Both the fabricated 

surfaces are designed such that the channel widths are greater than this value of capillary 

length to ensure that the liquid does not remain pinned in the channels. The heat flux 

comparison of plain surface with surface 1 for Novec 7100 is provided in Figure 5.5. The 

results indicate a linear trend of increasing heat flux with increasing subcooling 

temperature. The heat fluxes obtained from the plain surface were in the expected range 

as these values are in good agreement with the experimental condensation data available 

in literature for low surface tension liquids such as FC-72 (which has physical properties 

very similar to Novec 7100). It can be observed that the heat fluxes for surface 1 are 

significantly greater than the plain surface by a factor of around 3 at a subcooling 

temperature of 8°C. Therefore, the condensation heat transfer rate is improved by around 

200%. The condensation heat transfer performance of surface 1 is significantly higher 

than the plain surface due to the increased surface area, and the induced capillary effect 

coming into play to effectively remove the condensate. 



68 

 

Figure 5.5: Heat flux of the plain surface and the capillary assisted condensation surface 1 at different 
subcooling temperatures for condensate Novec 7100 vapor. 

Surface 2 with an additional cover mesh layer and a decreased channel width further 

enhances the rate of condensation of Novec 7100 fluid as can be observed from the 

results in Figure 5.6.  The condensation performance for surface 2 is increased by more 

than 350% compared to a plain surface at a subcooling temperature of 7°C. This increase 

can be owed to general increase in the surface area due to the copper meshes, and the 

additional surface area provided by the cover mesh layer. Hence, surface 2 proved to be 

the best surface to enhance the condensation performance of Novec 7100 fluid with 

increased performances of greater than 350% and more than 4.5 times increase in heat 

flux values. Surface 2 out performs surface 1 by a factor of 1.4 at a subcooling 

temperature of 7°C. The maximum heat flux measured was around 45kW/m2 for a 

temperature difference of 7°C, for surface 2. Hence, we were able to obtain significantly 
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higher heat fluxes and thus enhanced condensation performances for both our fabricated 

surfaces by employing a cost effective and simple to manufacture the capillary assisted 

condensate removal method. 

 

Figure 5.6: Heat flux of the plain surface and the capillary assisted condensation surface 1and 2 at different 
subcooling temperatures for condensate Novec 7100 vapor. 

There is a significant increase in the heat transfer coefficient due to the presence of 

capillary bridges and the cover layer as can be observed from Figure 5.7. For subcooling 

of around 7⁰C, the heat transfer coefficient increases 4 times for surface 1 at 4000 W/m2-

K and 6 times for surface 2 with the cover layer at 6000 W/m2-K, compared to a plain 

surface which is at 1300 W/m2-K for the same subcooling. The wicking effect of the 

capillary bridges and the additional cover layer effectively assist in increasing the 

condensation rate as well as the condensate removal rate, and thus the significant increase 

in the heat transfer coefficient is observed. 
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Figure 5.7: Heat transfer coefficient comparison of plain surface with surface 1 and surface 2 (Novec). 

It is clearly evident from Figure 5.8, that due to the high wickability of the designed 

capillary bridges, the condensate is continuously removed from the condensing surfaces 

and hence a significant reduction in the equivalent liquid film thickness of the condensate 

is observed. As a result, the thermal barrier for condensation, which is majorly due to the 

high thickness of the falling film, is reduced by almost 5 times, and the overall 

condensation heat transfer of the surface is enhanced. For subcooling of around 7⁰C, the 

plain surface shows a thickness of around 55 microns while the equivalent film thickness 

of surface 1 and 2 are around 20 microns and 10 microns, respectively. 
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Figure 5.8: Equivalent film thickness for plain surface, surface 1, and surface 2 (Novec). 
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6 Future Scope 
The experiments conducted under this thesis proved that the capillary assisted 

condensation heat transfer concept could significantly enhance the condensation rate of 

low surface tension liquids. We are far from fully understanding the behavior of various 

parameters in enhancing the condensation performance. The potential of such surfaces 

can be fully realized by thorough optimizing of the surface for a particular liquid. Further 

fabrication and test are required to characterize the effect of each parameter on the 

condensation performance. The experimentation could be continued by fabricating 

surfaces with varying pore sizes of the mesh layers, the number of mesh layers, the width 

of the channels, the number of cover layers, the order of mesh layers, the working fluid, 

and the substrate and mesh material. 
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7 Conclusion 
Condensation of low surface tension liquids typically occurs in the filmwise mode with 

gravity only the viable means of condensate removal from the surface. With our 

approach, we have fabricated robust, industrially scalable surfaces to employ an induced 

capillary pressure combined with the gravitational removal to substantially enhance the 

condensation heat transfer rate of low surface tension liquids. The new surface effectively 

decouples the condensation surface and condensate removal paths. We have observed 

condensation rate improvement by a factor of 3, at a subcooling of 8⁰C, compared to a 

plain surface, for low surface tension liquids such as Novec 7100. By adding a cover 

layer and decreasing the channel widths of the condensing surface, we have obtained 

further enhancement in the condensation rates with a factor of 4.5, at a subcooling of 7⁰C, 

compared to plain surface for Novec 7100 fluid. Although surfaces particularly fabricated 

in this thesis were not designed for water, they still provide an improvement in 

condensation compared to a plain surface. Simple machining processes and diffusion 

bonding processes were used to manufacture all the surfaces and heat exchangers used 

for experiments. Thus, we have explored the concept of employing a capillary assisted 

method to enhance condensation performance of low surface tension liquids and 

presented, in this thesis, a very simple, cost effect, and scalable approach to fabricate 

these surfaces. 
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A Calculations 
 The calculations used for various parameters in this document are provided in the 

sections below.  

A.1 Calculation of Capillary Length for Novec 7100 

 The major factors for determining the width of the channels for the condensation surface 

has been the capillary length of the working fluid. The width of the channels is designed 

such that it is always greater than the capillary length of the fluid, such that the fluid will 

not tend to remain in the channels and will flow down due to gravity. Both the 

condensation surfaces fabricated have been designed for Novec 7100 fluid. The 

calculation of the capillary length for Novec 7100 fluid is as shown below. 

𝐿𝐿𝑠𝑠 = �
𝜎𝜎

(𝜌𝜌𝑙𝑙 − 𝜌𝜌𝑣𝑣) × 𝑐𝑐
= �

0.0136
(1510 − 10.535) × 9.81

= 0.000961539𝑚𝑚 

Hence the capillary length of Novec 7100 fluid is determined to be 0.9615 mm.. 

A.2 Calculation of Meniscus Profile for Novec 7100 

Another factor affecting the behavior of the working fluid in the channels of the 

condensation surface is the meniscus formed by the fluid in the channels. Since no 

literature is available to determine the meniscus profile of a liquid in a vertical channel 

with porous walls in the presence of gravity, we have used a conventional formula to 

determine the meniscus profile of Novec 7100 fluid in a horizontal channel with solid 
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walls, to at least obtain a general idea of the meniscus dimensions. The equation used to 

determine the meniscus is shown below: 

𝑦𝑦
𝐿𝐿𝑐𝑐

= 𝑐𝑐𝑜𝑜𝑐𝑐ℎ−1 �2𝐿𝐿𝑐𝑐
𝑧𝑧
� − 𝑐𝑐𝑜𝑜𝑐𝑐ℎ−1 �2𝐿𝐿𝑐𝑐

𝑧𝑧0
� + �4 + 𝑧𝑧02

𝐿𝐿𝑐𝑐2
�
1
2 − �4 + 𝑧𝑧2

𝐿𝐿𝑐𝑐2
�
1
2    

By solving this nonlinear O.D.E., we obtain the shape of the interface as shown in Figure 

2.1. 
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	Abstract

	Extensive research has been carried out over the course of the last few decades to induce dropwise condensation as it offers 5 - 7 times better heat transfer performance compared to filmwise condensation process. A number of methods such as low surfac...
	We have determined that the condensation performance of the fabricated surfaces is enhanced by a factor of 3 compared to a plain surface, and further enhanced by a factor of 4.5, compared to a plain surface, by bonding an additional cover mesh layer a...

	1 Introduction
	Condensation is a very common process occurring throughout in nature [1-5] and a very influential process, which plays significant role in a wide range of industrial applications [6-13]. Condensation heat transfer has been the subject of more than...
	1.1 Hydrophobic Coatings
	Most industrial clean metal surfaces provide reduced energy barrier for droplet nucleation during condensation process owing to their high surface energy [41]. Due to high wetting tendency of these surfaces, the condensate forms a liquid film on the ...

	1.2 Superhydrophobic Surfaces
	With recent understanding of the superhydrophobic nature of the lotus leaf, a new approach of surface structuring to induce superhydrophobicity has been the topic of the last two decades of research. A hydrophobic surface when roughened results in air...
	Figure 1.1: Transition from suspended Cassie-Baxter state to pinned Wenzel state as condensation proceeds (Copyright of Narhe et al. [76]).
	Doerrer et al. [79] have studied this transition in detail where the micro-structured posts were coated with fluoropolymer. To achieve a sustained Cassie-Baxter state, Chen et al. [80] experimented with a two-tier hierarchical roughness, similar to ...
	It can be observed from Figure 1.3 that by using a combination of hierarchical micropillars with nanopillars ((e), (f)), spherical droplets typical of Cassie-Baxter state can be obtained before and after condensation as shown by Chen et al. [80].
	Wen et al. [81] showed enhanced condensation rates by structuring high aspect ratio nanowires and reducing the permeability of water vapor between copper nanowires. A copper substrate was cleaned to remove impurities and oxides and high aspect ratio ...
	Shaping the nanopillars, as cones, resulting in a nanocone array, similar to the nanostructures on cicada wings, seemed to have higher superhydrophobic performance and antifogging abilities even for microdroplets as investigated by Mouterde et al. [8...
	Figure 1.6: Nanocone structures and their performance. (a) nanocone array structured on the substrate, (b) structures on cicada wings, (c) adhesive force comparison between nanocylinder array (A-blue) and nanocone array (C-red) with temperature, and ...
	Mandsberg et al. [83] fabricated a chemically homogeneous micro pillar array by photolithography and treated to obtain a self-assembled monolayer of perfluorodecyltrichlorosilane to make it hydrophobic [83]. They showed that by having control over t...
	Figure 1.7: Chemically homogeneous micropillar array (left) and microdroplets controlled on the tips of these pillars (right) Copyright of Mandsberg et al. [83]).
	A novel cost effective method to spatially control a condensing microdroplet array was experimented by Xie et al. [84]. They fabricated a surface by sintering a copper mesh on to a copper block. Commercially available mesh screens of varying pore siz...
	Taking inspiration from the Namib beetle, Varanasi et al. [86] fabricated a novel hybrid micropillar array consisting of hydrophobic posts and hydrophilic tips, and thus effectively creating a wettability gradient on the same micropillar. The microst...
	Removal of condensed droplets from the surface for further condensation forms an integral part of any approach to enhance condensation heat transfer performance. Lee et al. [87] (Figure 1.12) investigated the concept of electrowetting of the condens...
	Figure 1.12: Demonstration of droplet jumping by electrowetting for different electrode configurations (Copyright of Lee et al. [87]).

	1.3 Jumping Droplet Effect
	Jumping droplet phenomenon is the recent advancement and state-of-the-art mechanism for easy removal of the condensing droplets off the surface for condensation heat transfer enhancement. This phenomenon occurs when the condensing droplets coalesce an...
	Miljkovic et al. [92, 93] produced knife like copper oxide nanostructures of approximately 1 μm characteristic length on copper tubes through a simple immersion of the substrate in an alkaline solution. This fabrication approach resulted in oxidatio...
	Rykaczewski et al. [94] also explored the effect of micro topology of superhydrophobic surfaces on wetting states and droplet coalescence dynamics during condensation by fabricating varying dimensions of superhydrophobic surfaces with truncated micro...
	Wisdom et al. [96] demonstrated that the self-propelled jumping droplet effect can be used as an effective means for self-cleaning of contaminants from surfaces, as inspired from the cicada wings. They showed that when a contaminated superhydrophobic...
	Overall condensation heat transfer can be enhanced if the rate of droplet growth can be enhanced. This requires a hydrophilic surface though. At the same time, the rate of droplet removal from the surface should be enhanced to sustain dropwise conden...
	Figure 1.23: Hierarchical micropyramidal structures (Copyright of Chen et al. [97]).
	The micropyramids were fabricated by standard photolithography, anisotrophic etching of silicon, and controlling the etching time. A deep reactive ion etching (DRIE) process was used to produce the nanopillars. The base walls of the micropyramids were...
	Jumping droplets due to their interaction with the hydrophobic surfaces were found to attain a positive charge. In addition to the advantage of easy droplet removal, this charge could also be harvested to generate low levels of electric power by makin...
	Phase-change thermal diodes also make use of the jumping droplet effect to provide an effective means of heat transfer between the cooling surface and the surface to be cooled. By placing both the surfaces close to each other, the vapor condenses on t...
	Figure 1.26: Schematic of jumping droplet assisted thermal diode (Copyright of Boreyko et al. [100]).
	Jumping droplet phenomenon was discovered to suppress frost formation and also enabled easy defrosting as shown by Boreyko et al. [101], Chen et al. [102], and Zhang et al. [103] (cf. Figure 1.27 and Figure 1.28).

	1.4 Low Surface Tension Liquids and Condensation
	Although active pursuit of enhancing the condensation heat transfer performance has been carried out over the past century from the industrial and academic fronts, most of the research has been concentrated with water as the working fluid. There has b...
	Low surface tension liquids owing to their extreme wetting behavior typically end up in a filmwise condensation mode, and the only means for condensate removal is through gravity. The filmwise mode demonstrates a significant thermal barrier for conden...
	Figure 1.29: SLIPS fabricated for condensation of low surface tension fluids: (a) alumin-silica nanostructures, (b) re-entrant superomniphobic surface, (c) microposts fabricated via photolithography, and (d-f) surfaces impregnated with lubricants (Co...
	SLIPS, although have shown to provide a better condensation performance for low surface tension fluids, compared to conventional approaches, these surfaces are faced with a variety of new challenges making them a less viable approach to be extensively...
	Sett et al. [116] further investigated the concept of SLIPS with low surface tension fluids, particularly, the issues associated with SLIPS in this regard. They mentioned another challenge that limits the choice of SLIPS is the miscibility of the lub...
	Figure 1.30: Immiscibility tests conducted by Sett et al. [116] to determine working combination of lubricant and condensate: (a) insoluble dyes in lubricant, (b-d), immiscibility of Krytox 1525 lubricant with water, ethanol and hexane respectively,...
	Sett et al. [116] also investigated another major issue associated with SLIPS, that is, the encapsulation of the condensate with the lubricant known as cloaking. Due to low interfacial energy differences between viable lubricant and low surface tensi...
	Figure 1.31: Conditions for selection of lubricant and working fluid combinations (Copyright of Sett et al. [116]).
	Thus, SLIPS, although appear to be a promising approach, have their own challenges and further research is need to optimize the utilization of these surfaces.
	Summarizing all the discussions so far, we conclude that there are no effective means yet to solve the challenges of enhancing the condensation performances specifically for low surface tension liquids. In this thesis, we are attempting to attack this...


	Figure 1.3: Coalescence of condensate drops on parylene-coated textures. (a, b) condensate drops on only one-tier micropillars, (c, d) condensate drops on only one-tier nanopillars, and (e, f) condensate drops on two-tier micropillars deposited with nanopillars (Copyright of Chen et al. [80])).
	Figure 1.2: Two-tier textures: micropillars are etched in silicon, and CNT nanopillars are subsequently deposited. (a,b) microstructures with two varying sets of dimensions, (c) single micropillar with carbon nanotubes, and (d) deposited carbon nanotubes (Copyright of Chen et al. [80]).
	/
	Figure 1.5: Condensation rates on hydrophobic nanowires. (a) heat transfer performance, (b) jumping condensation, (c) mixing condensation, and (d) dropwise condensation (Copyright of Wen et al. [81]).
	Figure 1.4: Hydrophobic nanowires (Copyright of Wen et al. [81]).
	/
	Figure 1.9: Growth of microdroplets on oxidized mesh screen (Copyright of Xie et al. [84]).
	Figure 1.8: (a, b) Mesh screen and magnified image of screen showing the 4 regions, and (c-f) magnified images showing the microstructures of the regions 1 (copper substrate), 2 (warp wire), 3 (weft wire with nanograss) and 4 (weft wire with micropits) (Copyright of Xie et al. [84]).
	/
	Figure 1.10: Physical model of the mesh structure, droplet growth and thermal analysis (Copyright of Xie et al. [84]).
	Figure 1.11: Comparison of microdroplet nucleation and growth between an array of hybrid micropillars of hydrophobic walls and hydrophilic tips, and an array of only hydrophobic micropillars (Copyright of Varanasi et al. [86]).
	/
	Figure 1.14: Stages of droplet growth and subsequent removal of droplet by out-of-plane jumping (Copyright of Boreyko et al. [88]).
	Figure 1.13: Mechanism of droplet jumping (Copyright of Boreyko et al. [88]).
	/
	Figure 1.15: Copper nanostructures produced through surface oxidation. (a-c) and structures after silane deposition, and (d) Copyright of Miljkovic et al. [92]).
	Figure 1.16: Droplet growth dynamics and subsequent coalesce jumping during condensation (Copyright of Miljkovic et al. [92]).
	/
	Figure 1.18: Comparison of heat flux for partially wetting, flat surface and suspended morphologies (Copyright of Miljkovic et al. [93]).
	Figure 1.17: Comparison of heat flux and heat transfer coefficient for various modes of condensation (Copyright of Miljkovic et al. [92]).
	/
	Figure 1.20: Condensation on nanostructures with varying levels of oxidation (density of nanostructures) (Copyright of Feng et al. [95]).
	Figure 1.19: Variation of contact angle of droplets on copper surfaces with increasing levels of oxidation from (a) to (g) (Copyright of Feng et al. [95]).
	/
	Figure 1.22: Demonstration of microscale glass particle by aggregation of condensing liquid (Copyright of Wisdom et al. [96]).
	Figure 1.21: Demonstration of microscale glass particle removal, floating in the droplet (Copyright of Wisdom et al. [96]).
	/
	Figure 1.25: Droplet coalesce and out-of-plane jumping of condensed droplets (Copyright of Chen et al. [97]).
	Figure 1.24: Droplet nucleation and growth on the hierarchical micropyramids (Copyright of Chen et al. [97]).
	/
	Figure 1.27: Comparison of onset of frost formation between a hydrophobic surface and a superhydrophobic surface characteristic of jumping droplet (Copyright of Boreyko et al. [101]).
	Figure 1.28: Comparison of freezing wave propagation between a hydrophobic surface, SHS with nano structures and SHS with hierarchical structures (Copyright of Chen et al. [102]).
	2 Concept
	As mentioned in the previous chapter, the enhancement in condensation heat transfer has been the subject of numerous evolutions over past decades in terms of surface coatings, surface modification in the microscale and nanoscale, employment of hierarc...
	In this thesis, we attempt to utilize a capillary assisted condensation surface by fabricating novel, porous, 3D structures, on a surface to enhance the rate of condensation. The new concept in fact decouples the condensing surface and condensate remo...
	2.1 Capillary Assisted Condensate Removal
	The inspiration for our proposed condensation surfaces comes from the fact that there exists a relationship between capillary pressure and size of pores through which a fluid flows. Smaller pores induce higher capillary pressure. It is also known that...
	If a surface is preferentially patterned by porous metallic copper layers, a net out-of-plane capillary pressure can be created. This represents an effective and passive means of transporting the condensate vapor away from the cooler bottom surface an...
	The specific design of this surface has been carried out with a focus on improving the condensation heat transfer performance of extremely wetting liquids such as Novec 7100 dielectric fluid with a surface tension of 13.6mN/m. Such low surface tension...
	The capillary length of Novec 7100 fluid is calculated to be 0.962 mm (Appendix A.1). The meniscus profile for the liquid is calculated using Young-Laplace equations (Appendix A.2) and shown in Figure 2.1. The channel widths of 1 and 2.5 mm were ch...
	Figure 2.1: Meniscus profile of Novec 7100 dielectric as calculated from Young-Laplace equation (Appendix A.2).
	The schematic of the condensation surface is shown in Figure 2.2. The condensation surface consists of a copper substrate that is 6.25 mm in thickness with a length and width of 20 mm each. From the base of the substrate, protruded are five capillary...
	Table 2.1: Specifications of the inter-woven copper meshes bonded to the copper substrate
	Figure 2.2: Condensation surface geometry: (a) schematic of the designed condensation surface geometry, and (b) image of the actual fabricated condensation surface geometry.
	The schematic of the expected condensation process is as shown in Figure 2.3 and Figure 2.4, which represent cross-sectional top and side views of the condensation surface, respectively.
	Figure 2.3: Schematic of the condensation process from the cross-sectional top view of the surface: (a) dry surface with the porous layers before subjecting to condensation, and (b) the condensate is wicked into the capillary bridge.
	Figure 2.4: Schematic of the condensation process from the cross-sectional side view of the surface: (a) dry surface with the porous layers before subjecting to condensation, and (b) the condensate vapor being wicked into the capillary bridge, and th...

	2.2 Capillary Assisted Condensate Removal with a Covering Mesh Layer
	To further enhance the rate of condensation of this surface, a cover mesh layer with the small pore size is bonded to the tips of the capillary bridges. The top layer mesh provides a significantly greater surface area for condensation to take place. S...
	Figure 2.5: Schematic of the cover mesh bonded condensation surface with dimensions: (a) schematic of the designed condensation surface geometry, and (b) image of the actual fabricated condensation surface geometry.
	Figure 2.6: Schematic of the condensation process for the cover mesh bonded surface observed from the cross-sectional top view: (a) dry surface with the porous layers before subjecting to condensation, and (b) the condensate vapor being wicked into c...
	Figure 2.7: Schematic of the condensation process for the cover mesh bonded condensation surface as observed from the cross-sectional side view: (a) dry surface with the porous layers before subjecting to condensation, and (b) the condensate vapor be...


	3 Fabrication
	The major fabrication work for this thesis involved the fabrication and assembly of the heat exchanger module used for the condensation experiment and finally the fabrication of the designed condensation surface.
	3.1 Condensation Surface
	The final condensation surface resulted from three manufacturing steps, where included the cutting/machining of the individual parts, diffusion bonding of the copper mesh layers to the copper substrate, and machining of channels in the copper mesh sur...
	3.1.1 Preparation of the Individual Parts
	The required copper substrate piece was cut from a 6" length, 3" wide, 1/4" thick commercially pure (99.9% pure) stock copper block (Copper Plate, McMaster) using a band saw. The copper substrate piece was then machined using a milling machine to the ...
	Figure 3.1: Image of the precisely machined and cleaned copper substrate (left), and the inter-woven copper mesh pieces cut to the required dimensions (right).

	3.1.2 Cu-Cu Diffusion Bonding
	A number of experimental trials were performed with varying sizes of copper substrates and copper meshes, varying levels of clamping forces, varying levels of vacuum to finally arrive at proper working conditions to obtain a clean, oxide-free, and dur...
	Figure 3.2: Progress of the experimental trials to arrive at a functional bonding of the copper meshes to the substrate: (a) beam clamped setup in partial vacuum with one mesh layer, (b) beam clamped setup in partial vacuum with 2 mesh layers, (c) be...
	The prepared copper meshes and substrate were placed such that the copper substrate forms the base followed by two large mesh pieces, two medium mesh pieces, three small mesh pieces, and finally one small mesh piece. The copper mesh setup was placed b...
	Figure 3.3: Diffusion bonded copper substrate-mesh surface: (a) overview of the substrate-mesh surface, (b, c) microscopic images of the large copper meshes bonded to the substrate at the free edges, (d) microscopic image of the small copper mesh at ...

	3.1.3 Machining of Channels on the Copper Mesh Surface
	Since the initial copper mesh pieces were 25 mm x 25 mm, the extra projections of the copper mesh from the sides were cut out using a metal cutter tool so that the final surface was simply a 20 mm x 20 mm block. The total mesh layer thickness after di...
	Figure 3.4: Final condensation surface: (a) side walls of the machined channels with pores opened-up after copper etchant rinsing, and (b-e) various orientations of the condensation surface.


	3.2 Condensation Surface with Cover Mesh
	The condensation surface with the cover mesh layer was fabricated with the exact same manufacturing process and steps as those described in Sections 3.1.1, 3.1.2 and 3.1.3. The mesh configuration for this layer comprised of two large pore meshes, t...
	Table 3.1: Specifications of the inter-woven copper meshes bonded to the copper substrate in the case of the surface with cover mesh layer
	Figure 3.5: Final condensation surface with cover mesh: (a) condensation surface with the cover mesh layer bonded, and (b-e) various orientations of the condensation surface with cover mesh.

	3.3 Heat Exchanger
	The heat exchanger designed for our condensation surface was fabricated by a three step manufacturing process including the machining of individual parts, brazing to seal the parts, and assembly to the liquid feedthrough of the vacuum chamber.
	3.3.1 Machining of Individual Parts
	A copper stock block of 2" x 2" x 1" was machined to the required size of 50.8 mm x 50.8 mm x 19.05 mm. Channels of 5.08 mm width and 11.68 mm depth with banks of 1.02 mm width were machined on this block to provide a serpentine path for the flow of t...
	Figure 3.6: CAD model of the main body of the heat exchanger
	The top surface of the heat exchanger was enclosed by a machined cover plate of size 45.72 mm x 45.72 mm x 2.03 mm. To accurately measure the heat added to the condensation surface during condensation, a 1D-heat transfer column of dimensions of 10 mm ...
	Figure 3.7: CAD model of the cover plate (left) and the 1D column (right).

	3.3.2 Assembly of Heat Exchanger
	Since 1D column, cover plate, and steel pipes have to be individually brazed to the heat exchanger main body, the brazing process was carried out in three stages to assemble the heat exchange module.
	The cover plate of the heat exchanger was attached to the main body by a high temperature brazing process to make an airtight seal along the top surface perimeter of the block as shown in Figure 3.9. The cover plate was centrally placed on top of the...
	The main body of the heat exchanger had 2 holes drilled at the left bottom corner and the right top corner coinciding with the inlet and the outlet of serpentine channel flow path of the cooling liquid inside the body of the block (as shown in Figure ...
	Figure 3.8: CAD model of the designed heat exchanger assembly.
	Figure 3.9: Schematic of the assembled heat exchanger module with dimensions.
	Figure 3.10: Fabricated, brazed, and assembled heat exchanger module: (a, b) heat exchanger with the brazed main body, cover plate, 1D column and feed pipes, and (c, d) heat exchanger with the condensation surface soldered and covered with the first ...
	The fabricated condensation surface was attached to the top of the 1D column using a simple low temperature soldering process. A low temperature solder material with a melting point of 240⁰C is placed between the top surface of the 1D column and botto...

	3.3.3 Fixing the Heat Exchanger to the Liquid Feedthrough
	The liquid feedthrough of the vacuum chamber consisted of four 1/4" pipes with attached 1/4" Swagelok connectors. The steel pipes of the heat exchangers were double bent to coincide with two pipes of the liquid feedthrough, inserted into the Swagelok ...



	4 Experimental Setup and Operation
	Considering the extensive research that has been carried out over the past few decades on phase change heat transfer, a major hurdle and stumbling block for the progress of this research has been the validation of the results, repeatability of the res...
	Colburn et al. [104] were among some of the early researchers who worked on understanding the effect of non-condensable gases on condensation. Rose et al. [14] and Citakoglu et al. [117] studied the errors in measurement resulting from the presence...
	Hence, the condensation experimentation was carried out in vacuum to remove the effect of any non-condensable gases and maintain the consistency of the measured data. To accurately measure the heat flux through the 1D column, one critical criteria is ...
	4.1 Condensation Test Setup Components
	The condensation test setup consisted of a vacuum chamber, the insulated heat-exchanger, and condensation surface assembly, Novec 7100 / Water (working fluid), thermocouples, pressure transducer, piping for cooling water flow, data acquisition system ...
	4.1.1 Vacuum Chamber
	The vacuum chamber used for the condensation experiment was a stainless steel structure that resembles a 4" diameter cross-junction pipe. The chamber was 10" in length, 6" in width, and 10" in height. It consisted of four ISO100 type connections and a...
	Figure 4.1: Vacuum chamber with the viewport and KF40 T-junction.

	4.1.2 Thermocouples and Data Acquisition System
	Five thermocouple probes were used to measure working temperatures of the test setup. The thermocouple were calibrated by a constant temperature bath to an accuracy of ±0.2 K before the experiments. Three thermocouples were inserted into the three pre...
	Figure 4.2: Thermocouples (left), and the data acquisition system (right) used in the experiment.

	4.1.3 Pressure Transducer, DC Power Source, and Multimeter
	A high accuracy silicon pressure transducer with a steel diaphragm was mounted on one of the free pipes in the liquid feedthrough to measure the saturation pressure of the fluid during the experiment. The absolute pressure transducer used was an Omega...
	Figure 4.3: Pressure transducer - PX309-015AV model (left) with the DC power source (mid) and the Keithley 2700 multimeter (right).

	4.1.4 Heating Block and Cooling Water
	A copper block with holes drilled to house two 250 W cartridge heaters was used to heat the Novec 7100 and Water fluids to generate vapor during the experiment. The copper heating block was placed on an insulation brick to avoid loss of heat and effec...

	4.1.5 Novec 7100 Dielectric Fluid
	Novec 7100 dielectric fluid was used as the low surface tension working fluid in this experimentation. The fluid has a low surface tension of 13.6 mN/m and serves as an ideal fluid to display the effectiveness of the fabricated condensation surface du...
	Table 4.1: Specifications Properties of Novec 7100 Dielectric Fluid


	4.2 Assembly of the Experimental Setup
	Vacuum chamber formed the main body of the experimental setup to which all other components were attached. The schematic and actual assembled condensation experimental setups are shown in Figure 4.4 and Figure 4.5, respectively. The left limb ISO100...
	Figure 4.4: Schematic of Condensation Experimental Setup.
	Figure 4.5: Assembled condensation test setup.

	4.3 Operation
	Once the test setup was assembled, the chamber was vacuumed to well below the saturation pressure of the liquid calculated from the liquid temperature readings. This was typically around 20 kPa for a temperature of about 23⁰C for the Novec 7100 Fluid ...

	4.4 Uncertainty Analysis
	Uncertainty analysis is performed to determine the possible error ranges, for all the measured and calculated values, depending on the accuracies of the all the measuring devices. The final results in the following sections are reported by incorporati...
	The uncertainty in the measurements provided by the thermocouples is taken as 𝛿𝑇=±0.2𝐾 and the accuracy in the dimensions of the precision-machined parts, such as the fabricated condensation surface, 1D column, heat exchanger assembly etc. are take...
	The uncertainty in the calculation of heat flux values is performed as
	,𝛿𝑞"-𝑞".=,,,,𝛿,∆,𝑇-𝑐..-∆,𝑇-𝑐...-2.+,,,𝛿,𝑡-𝑐.-,𝑡-𝑐...-2.  .
	The uncertainty in the calculation of heat transfer coefficient values is performed as
	,𝛿ℎ-ℎ.=,,,,𝛿𝑞"-𝑞"..-2.+,,,𝛿,∆𝑇.-∆𝑇..-2. .
	The uncertainty in the calculation of equivalent film thickness values is performed as
	,𝛿,𝑡-𝑓.-,𝑡-𝑓..=,,,,𝛿𝑞"-𝑞"..-2.+,,,𝛿,∆𝑇.-∆𝑇..-2. .


	5 Results and Discussion
	The condensation experiment was performed for three surfaces; a plain copper substrate without the copper meshes (dimensions were the same as those shown in Figure 2.2, but, without the copper meshes); the condensation surface fabricated with capilla...
	The critical parameter of heat flux was calculated through two methods. The first method was the conventional method of determining the inlet and outlet temperatures of the cooling water through the heat exchanger and determining the flow rate of the ...
	,𝑞-".=,,𝑚.×,𝐶-𝑝.×,,𝑇-𝑜𝑢𝑡.−,𝑇-𝑖𝑛..−,𝑞-𝑙𝑜𝑠𝑠.-𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎.=,,𝑚.×,𝐶-𝑝.×,,𝑇-𝑜𝑢𝑡.−,𝑇-𝑖𝑛..−,𝑞-𝑙𝑜𝑠𝑠.-𝐴.
	The surface temperature of the condensation surface was obtained by extrapolation of the temperature reading of thermocouple at the center of condensation surface. The saturation temperature of the working fluid was calculated from the saturation pres...
	The second method of determining the heat flux was based on the temperature differences in the 1D column. The rate of heat conduction through the copper 1D column gives a more accurate measure of the rate of latent heat of condensation added to the su...
	,𝑞-".=𝑘,∆,𝑇-𝑐.-𝐿.
	We have observed that heat flux calculated based on the above methods are close and hence either of the methods is suitable for the heat flux calculations.
	The results of the six test cases are provided in the following sections. In the following, the condensation surface initially fabricated without the covering top mesh is referred to as 'surface 1' and the surface fabricated with the additional cover ...
	5.1 Performance Comparison of Water
	Figure 5.1 shows the heat flux of the plain surface and surface 1 at different subcooling temperatures (i.e., Tsat-Tsurface) for condensate water vapor. The results indicate a linear trend where the heat flux, and hence, the rate of condensation incr...
	Figure 5.1: Heat flux of the plain surface and the capillary assisted condensation surface 1 at different subcooling temperatures for condensate water vapor.
	The capillary assisted condensation surface 2 fabricated with an additional top cover layer compared to surface 1 is also observed to perform better than the plain surface as shown in Figure 5.2. Here, a similar linear trend of increasing heat flux w...
	Figure 5.2: Heat flux of the plain surface and the capillary assisted condensation surface 1and 2 at different subcooling temperatures for condensate water vapor.
	Heat transfer coefficient for both the working fluids and all three surfaces can be calculated from the below formula:
	𝐻𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡,,𝑊-,𝑚-2.−𝐾..=,𝐻𝑒𝑎𝑡 𝐹𝑙𝑢𝑥 ,,𝑊-,𝑚-2...-𝑆𝑢𝑏𝑐𝑜𝑜𝑙𝑖𝑛𝑔 ,𝐾..→ℎ,,𝑊-,𝑚-2.−𝐾..=,,𝑞-".,,𝑊-,𝑚-2...-∆𝑇,𝐾..
	The heat transfer coefficients of surface 1 and surface 2 in comparison to the plain surface are provided in Figure 5.3. It can be observed that the heat transfer coefficients of all three surfaces are typical of filmwise condensation. Although, not ...
	Figure 5.3: Heat transfer coefficient comparison of plain surface with surface 1 and surface 2 (water).
	The equivalent liquid film thickness for both the working fluids and all three surfaces can be calculated from the below formula:
	𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑙𝑖𝑞𝑢𝑖𝑑 𝑓𝑖𝑙𝑚 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠,𝑚.=,𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑,,𝑊-𝑚−𝐾..× 𝑆𝑢𝑏𝑐𝑜𝑜𝑙𝑖𝑛𝑔 ,𝐾.-𝐻𝑒𝑎𝑡 𝐹𝑙𝑢𝑥 ,,𝑊-,𝑚-2....
	,𝑡-𝑓.,𝜇𝑚.=,𝑘,,𝑊-𝑚−𝐾..× ∆𝑇 ,𝐾.-,𝑞-". ,,𝑊-,𝑚-2...×1000000.
	The equivalent liquid film thickness during condensation of water vapor on all investigated surfaces is shown in Figure 5.4. The equivalent liquid film thickness provides a general understanding on the thickness range of liquid films present during t...
	Figure 5.4: Equivalent liquid film thickness for plain surface, surface 1, and surface 2 (water).

	5.2 Performance Comparison of Novec 7100 Fluid
	Novec 7100 fluid has a capillary length of 0.96 mm (Appendix A.1). Both the fabricated surfaces are designed such that the channel widths are greater than this value of capillary length to ensure that the liquid does not remain pinned in the channels...
	Figure 5.5: Heat flux of the plain surface and the capillary assisted condensation surface 1 at different subcooling temperatures for condensate Novec 7100 vapor.
	Surface 2 with an additional cover mesh layer and a decreased channel width further enhances the rate of condensation of Novec 7100 fluid as can be observed from the results in Figure 5.6.  The condensation performance for surface 2 is increased by m...
	Figure 5.6: Heat flux of the plain surface and the capillary assisted condensation surface 1and 2 at different subcooling temperatures for condensate Novec 7100 vapor.
	There is a significant increase in the heat transfer coefficient due to the presence of capillary bridges and the cover layer as can be observed from Figure 5.7. For subcooling of around 7⁰C, the heat transfer coefficient increases 4 times for surfac...
	Figure 5.7: Heat transfer coefficient comparison of plain surface with surface 1 and surface 2 (Novec).
	It is clearly evident from Figure 5.8, that due to the high wickability of the designed capillary bridges, the condensate is continuously removed from the condensing surfaces and hence a significant reduction in the equivalent liquid film thickness o...
	Figure 5.8: Equivalent film thickness for plain surface, surface 1, and surface 2 (Novec).


	6 Future Scope
	The experiments conducted under this thesis proved that the capillary assisted condensation heat transfer concept could significantly enhance the condensation rate of low surface tension liquids. We are far from fully understanding the behavior of var...

	7 Conclusion
	Condensation of low surface tension liquids typically occurs in the filmwise mode with gravity only the viable means of condensate removal from the surface. With our approach, we have fabricated robust, industrially scalable surfaces to employ an indu...
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	A Calculations

	The calculations used for various parameters in this document are provided in the sections below.
	A.1 Calculation of Capillary Length for Novec 7100

	The major factors for determining the width of the channels for the condensation surface has been the capillary length of the working fluid. The width of the channels is designed such that it is always greater than the capillary length of the fluid, ...
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	Hence the capillary length of Novec 7100 fluid is determined to be 0.9615 mm..
	A.2 Calculation of Meniscus Profile for Novec 7100

	Another factor affecting the behavior of the working fluid in the channels of the condensation surface is the meniscus formed by the fluid in the channels. Since no literature is available to determine the meniscus profile of a liquid in a vertical ch...
	,𝑦-,𝐿-𝑐..=,𝑐𝑜𝑠ℎ-−1.,,2,𝐿-𝑐.-𝑧..−,𝑐𝑜𝑠ℎ-−1.,,2,𝐿-𝑐.-,𝑧-0...+,,4+,,,𝑧-0.-2.-,,𝐿-𝑐.-2...-,1-2..−,,4+,,𝑧-2.-,,𝐿-𝑐.-2...-,1-2..
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